A Method for Computing the Iwasawa λ -Invariant

By R. Ernvall and T. Metsänkylä

Abstract. We present a method for computing the minus-part of the Iwasawa λ -invariant of an Abelian field K. Applying this method, we have computed λ^- for several odd primes p when K runs through a large number of quadratic extensions of the pth cyclotomic field. A report on these computations and an analysis of the results is included.

1. Introduction. Let K be an Abelian field, i.e., a finite Abelian extension of Q. For a prime p > 2, consider the cyclotomic \mathbb{Z}_p -extension K_{∞} of K. Let K_n $(n \ge 0)$ denote the intermediate field of K_{∞}/K which is cyclic of degree p^n over K. The *p*-part of the class number of K_n equals $p^{\lambda n+\nu}$, for all sufficiently large *n*, where $\lambda = \lambda(p)$ and $\nu = \nu(p)$ are integral constants, $\lambda \ge 0$. Call λ the Iwasawa λ -invariant of K and write $\lambda = \lambda^+ + \lambda^-$, where λ^+ is the corresponding invariant of the maximal real subfield of K. In this paper we present a method for computing λ^- , developed by the second author, and report on computer calculations by the first author, performed by this method.

If the conductor f_K of the field K is divisible by p^2 , then K has a subfield L such that $p^2 + f_L$ and the cyclotomic \mathbb{Z}_p -extension of L equals K_{∞} . Hence we assume, without loss of generality, that $p^2 + f_K$. Denote by Ch(K) the character group of K. It is known that λ^- decomposes as

$$\lambda^{-} = \sum_{\chi \in X} \lambda_{\chi}$$

with

$$X = X(K) = \{ \chi \in \operatorname{Ch}(K) \colon \chi(-1) = -1, \, \chi \neq \omega^{-1} \},\$$

where ω denotes the Teichmüller character mod p and λ_{χ} is the λ -invariant of the Iwasawa power series representing the p-adic L-function $L_p(s, \chi \omega)$.

Thus, the computation of λ^- is reduced to the determination of the components λ_{χ} . This will be done in two steps: We first relate λ_{χ} to the *p*-orders of certain generalized Bernoulli numbers and then show how to determine these *p*-orders by means of a series of character sum congruences. As an application we consider the fields $\mathbf{Q}(\sqrt{m}, \zeta_p)$, where *m* is an integer prime to *p* and ζ_p denotes a primitive *p*th root of 1. In this case the congruences in question are simply rational congruences mod *p*.

Received September 5, 1986.

©1987 American Mathematical Society 0025-5718/87 \$1.00 + \$.25 per page

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 11R23, 11R29, 11S40, 11Y40, 11-04.

The computational part of our work consists of the determination of λ^- for quite a large collection of fields $\mathbf{Q}(\sqrt{m}, \zeta_p)$, chosen so that either p or |m| is small. More precisely, we computed for these fields the components λ_{χ} with $\chi = \theta_m \omega^t$, where θ_m is the quadratic character of the field $\mathbf{Q}(\sqrt{m})$; this is sufficient since the λ^- invariants of the cyclotomic subfields $\mathbf{Q}(\zeta_p)$ are known. Our results also give the λ -invariant of $\mathbf{Q}(\sqrt{m})$ for the negative m in the range under consideration.

There are previous numerical results about λ^{-} in [1], [2], [3], [4], [6]. These concern mainly quadratic fields and the fields $\mathbf{Q}(\sqrt{-1}, \zeta_p)$ and $\mathbf{Q}(\sqrt{-3}, \zeta_p)$, and in all cases the decomposition of λ^{-} is simple in the sense that either there is but one positive component λ_{χ} , or all the positive components are equal to 1. In the present results this is no longer the case.

A detailed description of our computations appears in Sections 7–9.

2. On *p*-Adic *L*-Functions. For the theory of this section, the reader is referred to Washington's book [11], in particular to Sections 5.2 and 7.2.

We fix an embedding of the field of algebraic numbers in an algebraic closure Ω_p of \mathbf{Q}_p , the field of *p*-adic numbers. Denote by ord_p the *p*-adic valuation on Ω_p , normalized so that $\operatorname{ord}_p(p) = 1$.

Let χ be a character in X(K) (all characters are assumed primitive). Since the conductor f_{χ} of χ divides f_{K} , it is not divisible by p^{2} ; we say that χ is of the "first kind". Put

$$f_{\gamma} = d \text{ or } dp \text{ with } (d, p) = 1.$$

As in the introduction, let K_n denote the *n*th layer of the \mathbb{Z}_p -extension K_{∞}/K $(n \ge 0)$. The character group of K_n is of the form $Ch(K) \times \langle \pi_n \rangle$, where π_n is a character with order p^n and conductor p^{n+1} (or 1, if n = 0); π_n is called a character of the "second kind".

Now consider the *p*-adic *L*-function $L_p(s, \psi)$ for the (nonprincipal) character $\psi = \chi \omega \pi_n$. This function is defined in Ω_p in a neighborhood of 1 containing \mathbf{Z}_p , the *p*-adic integers, and it has the fundamental property that

(1)
$$L_p(1-k,\psi) = -(1-\psi_k(p)p^{k-1})B^k(\psi_k)/k \quad (k \ge 1),$$

where $\psi_k = \psi \omega^{-k}$ and $B^k(\psi_k)$ stands for the k th generalized Bernoulli number attached to the character ψ_k .

Denote by $\mathbf{Q}_p(\chi)$ the extension of \mathbf{Q}_p generated by the values of χ . Iwasawa's theory of *p*-adic *L*-functions asserts that there exists a power series

(2)
$$f(x, \chi \omega) = \sum_{j=0}^{\infty} a_j x^j$$

whose coefficients $a_1 = a_1(\chi)$ are integers of $\mathbf{Q}_p(\chi)$, such that

(3)
$$L_p(s, \chi \omega \pi_n) = f\left(\frac{(1+dp)^s}{\pi_n(1+dp)} - 1, \chi \omega\right).$$

According to the Ferrero-Washington theorem, the power series $f(x, \chi \omega)$ has $\mu = 0$, in other words, there is an index j for which $\operatorname{ord}_p(a_j) = 0$. The least such j is called the λ -invariant (or Weierstrass degree) of $f(x, \chi \omega)$. This is the number λ_{χ} introduced in Section 1.

3. The *p*-Orders of Generalized Bernoulli Numbers. Let us decompose χ as

$$\chi = \theta \omega^{t-1}$$
 with $f_{\theta} = d \ (\geq 1), \quad 1 \leq t \leq p-1.$

In this section we obtain a relation between λ_{χ} and the *p*-order of $B^{t}(\theta \pi_{n})$.

For a fixed $n \ge 1$, put

$$\alpha_{k} = \frac{(1+dp)^{1-k}}{\pi_{n}(1+dp)} - 1 \qquad (k \ge 1).$$

It follows from (3) and (1) that, for all t = 1, ..., p - 1,

$$f(\alpha_t, \theta\omega^t) = L_p(1-t, \theta\omega^t\pi_n)$$

= $-(1-(\theta\pi_n)(p)p^{t-1})B^t(\theta\pi_n)/t = -B^t(\theta\pi_n)/t.$

By using this result we prove the following proposition in which ϕ denotes Euler's totient function and e is the ramification index of $\mathbf{Q}_{p}(\theta)/\mathbf{Q}_{p}$.

PROPOSITION 1. Let $n \ge 1$ and $1 \le t \le p - 1$. We have

$$\operatorname{ord}_{p}(B^{t}(\theta\pi_{n})) = \lambda_{\chi}/\phi(p^{n}) < 1/e \quad \text{if } \lambda_{\chi} < \phi(p^{n})/e,$$
$$\operatorname{ord}_{p}(B^{t}(\theta\pi_{n})) \ge 1/e \quad \text{if } \lambda_{\chi} \ge \phi(p^{n})/e.$$

Proof. We evaluate the *p*-order of $f(\alpha_t, \theta\omega^t) = \sum_{j=0}^{\infty} a_j \alpha_j^j$.

By the definition of π_n , the number $\pi_n(1 + dp) = \zeta$ is a primitive p^n th root of 1. Since

$$\alpha_{t} = \frac{1 - \zeta (1 + dp)^{t-1}}{\zeta (1 + dp)^{t-1}},$$

we have $\operatorname{ord}_p(\alpha_t) = \operatorname{ord}_p(1-\zeta) = 1/\phi(p^n)$.

As to the *p*-orders of the coefficients a_j , observe that these are integers of $\mathbf{Q}_p(\chi) = \mathbf{Q}_p(\theta)$. Therefore, if $\operatorname{ord}_p(a_j) > 0$ then $\operatorname{ord}_p(a_j) \ge 1/e$.

Recalling the definition of λ_x we now see that

$$\operatorname{ord}_{p}\left(a_{j}\alpha_{t}^{j}\right) \geq 1/e \qquad \qquad \text{for } 0 \leq j \leq \lambda_{\chi} - 1,$$
$$= j \operatorname{ord}_{p}\left(\alpha_{t}\right) = \lambda_{\chi}/\phi\left(p^{n}\right) \qquad \text{for } j = \lambda_{\chi},$$
$$\geq j \operatorname{ord}_{p}\left(\alpha_{t}\right) > \lambda_{\chi}/\phi\left(p^{n}\right) \qquad \text{for } j > \lambda_{\chi}.$$

Consequently, if $\lambda_{\chi} < \phi(p^n)/e$, then

$$\operatorname{ord}_p(f(\alpha_t, \theta\omega^t)) = \lambda_{\chi}/\phi(p^n),$$

while otherwise this *p*-order is at least 1/e. Hence the result. \Box

Proposition 1 gives us the value of λ_{χ} , once we know $\operatorname{ord}_p(B'(\theta \pi_n))$ for a sufficiently large *n*. For later purposes it is convenient to reformulate this proposition, actually in a bit weaker form, as follows.

Note that the congruence $\alpha \equiv \beta \pmod{p^r}$ in Ω_p means that $\operatorname{ord}_p(\alpha - \beta) \ge r$.

PROPOSITION 2. Let $n \ge 1$ and $1 \le t \le p - 1$. Assume that $h \in \mathbb{Z}$, $1 \le h \le \phi(p^n)/e$. Then

$$\lambda_{\chi} \ge h$$
 if and only if $B^{t}(\theta \pi_{n}) \equiv 0 \pmod{p^{h/\phi(p^{n})}}$.

Proof. Suppose that the above congruence holds. If $\lambda_{\chi} < \phi(p^n)/e$, then a comparison of this congruence with the first part of Proposition 1 shows that $\lambda_{\chi} \ge h$. If $\lambda_{\chi} \ge \phi(p^n)/e$, then the assertion follows directly from the assumption made about h.

To verify the converse, apply both parts of Proposition 1 separately. \Box

Remark. Proposition 2 is of the same kind as the main result in the second author's paper [8]. This relates λ_{χ} to certain Kummer type congruences of $B^{k}(\theta)$, provided $\lambda_{\chi} \leq p - 1$. Proposition 2 would enable one to replace the proof presented in [8] by a somewhat simpler proof.

4. Bernoulli Numbers and Character Sums. We now express the residue of $B^{t}(\theta \pi_n)$ modulo p in terms of suitable character sums.

For any character ψ with conductor f we have, in the usual symbolic notation,

$$B^{k}(\psi) = \frac{1}{f} \sum_{a=1}^{J} \psi(a) (fB + a - f)^{k} \qquad (k \ge 0)$$

(e.g., [7, p. 134]), where the B^m denote ordinary Bernoulli numbers. On changing the summation variable a into f - a we obtain

$$B^{k}(\psi) = \frac{(-1)^{k}\psi(-1)}{f} \sum_{a=1}^{f} \psi(a)(a-fB)^{k}.$$

Let $\psi = \theta \pi_n$ with $n \ge 1$. Then $\psi(-1) = (-1)^t$ since the character $\chi = \theta \omega^{t-1}$ is odd and π_n , being of *p*-power order, is even. Hence we find that

$$B^{t}(\theta\pi_{n}) = \frac{1}{dp^{n+1}} \sum_{a=1}^{dp^{n+1}} (\theta\pi_{n})(a)(a - dp^{n+1}B)^{t}$$

$$\equiv \frac{1}{dp^{n+1}} \sum_{a=1}^{dp^{n+1}} (\theta\pi_{n})(a)a^{t} - tB^{1} \sum_{a=1}^{dp^{n+1}} (\theta\pi_{n})(a)a^{t-1} \pmod{p}.$$

The second sum of the last expression vanishes mod p, as can be verified again by the transformation $a \rightarrow dp^{n+1} - a$. Therefore,

(4)
$$B^{t}(\theta \pi_{n}) \equiv \frac{1}{dp^{n+1}} \sum_{a=1}^{dp^{n+1}} (\theta \pi_{n})(a) a^{t} \pmod{p}.$$

From this result we derive the following congruence which is of the same type as the classical Voronoĭ congruence for ordinary Bernoulli numbers. We point out that the congruence (in a sharper form) has also been proved by Slavutskiĭ [9, congr. (6)].

PROPOSITION 3. Let b be a positive rational integer with (b, dp) = 1. Then

$$\left(b^{t} - (\theta \pi_{n})(b)^{-1}\right) B^{t}(\theta \pi_{n}) \equiv t b^{t-1} \sum_{a=1}^{dp^{n+1}} (\theta \pi_{n})(a) a^{t-1} \left[\frac{ba}{dp^{n+1}}\right] (\text{mod } p),$$

where, as in the above, $n \ge 1$ and $1 \le t \le p - 1$.

Proof. Put $\psi = \theta \pi_n$. Let a and b be positive rational integers prime to dp. Keeping b fixed, we write

$$ba = dp^{n+1} \left[\frac{ba}{dp^{n+1}} \right] + r_a, \qquad 0 < r_a < dp^{n+1}.$$

On raising this equation to the *t*th power and multiplying by $\psi(a) = \psi(b)^{-1} \psi(r_a)$, we get

$$\psi(a)b^{t}a^{t} \equiv \psi(b)^{-1}\psi(r_{a})r_{a}^{t} + \psi(a)tr_{a}^{t-1}dp^{n+1}\left[\frac{ba}{dp^{n+1}}\right] (\text{mod } p^{2n+2}).$$

If a runs through $1, ..., dp^{n+1}$, excepting those numbers for which (a, dp) > 1, then so does r_a . Summing over a we find that (observe that $\psi(a) = 0$ if (a, dp) > 1)

$$\left(b^{t}-\psi(b)^{-1}\right)\sum_{a=1}^{dp^{n+1}}\psi(a)a^{t}\equiv tdp^{n+1}\sum_{a=1}^{dp^{n+1}}\psi(a)r_{a}^{t-1}\left[\frac{ba}{dp^{n+1}}\right] (\text{mod } p^{2n+2}).$$

Since $r_a \equiv ba \pmod{p^{n+1}}$, this result together with (4) yields the claimed congruence. \Box

5. The Main Result. Every rational integer a prime to p has the following unique representation mod p^{n+1} :

(5)
$$a \equiv \omega(a)(1+p)^{\nu(a)} \pmod{p^{n+1}}, \quad 0 \le \nu(a) < p^n.$$

For $b \in \mathbb{Z}$, (b, dp) = 1, put

(6)
$$S_{nk} = S_{nk}(b) = \sum_{v(a)=k} \theta(a) a^{t-1} \left[\frac{ba}{dp^{n+1}} \right] \quad (k = 0, \dots, p^n - 1),$$

where the sum is extended over those numbers a for which $1 \le a \le dp^{n+1}$, (a, dp) = 1 and v(a) = k. Moreover, set

(7)
$$T_{u} = T_{u}^{(n)} = \sum_{k=u}^{p^{n-1}} {\binom{k}{u}} S_{nk} \qquad (u = 0, \dots, p^{n} - 1).$$

THEOREM. Let $\chi = \theta \omega^{t-1} \in X(K)$, where $f_{\theta} = d$ is prime to p and $1 \leq t \leq p-1$. Let b be a positive integer such that

 $(b, dp) = 1, \qquad \theta(b)b^t \not\equiv 1 \pmod{p},$

where \mathfrak{P} is the maximal ideal of the ring of integers of $\mathbf{Q}_p(\theta)$. Denote by e the ramification index of $\mathbf{Q}_p(\theta)/\mathbf{Q}_p$. Let $n \ge 1$ and let $h \in \mathbb{Z}$, $1 \le h \le \phi(p^n)/e$. With the above notations,

$$\lambda_{\chi} \ge h$$
 if and only if $T_0^{(n)} \equiv T_1^{(n)} \equiv \cdots \equiv T_{h-1}^{(n)} \equiv 0 \pmod{p}$.

Proof. Since the nonzero values of π_n are p^n th roots of 1, we have $\pi_n(b) \equiv 1 \pmod{\mathfrak{p}}$. Hence

$$b^{t} - (\theta \pi_{n})(b)^{-1} \neq 0 \pmod{\mathfrak{p}},$$

and it follows from Propositions 2 and 3 that

$$\lambda_{\chi} \ge h$$
 if and only if $\sum_{a=1}^{dp^{n+1}} \theta(a) \pi_n(a) a^{t-1} \left[\frac{ba}{dp^{n+1}} \right] \equiv 0 \pmod{p^{h\kappa}},$

where $\kappa = 1/\phi(p^n)$.

For a fixed $n \ge 1$, write

$$\pi_n(1+p)=1+\eta.$$

Then we have $\operatorname{ord}_{p}(\eta) = \kappa$ and, by (5),

$$\pi_n(a) = (1+\eta)^{v(a)} \quad \text{for } p + a.$$

Consequently,

$$\sum_{a=1}^{dp^{n+1}} \theta(a) \pi_n(a) a^{t-1} \left[\frac{ba}{dp^{n+1}} \right] = \sum_{k=0}^{p^n-1} (1+\eta)^k S_{nk} = \sum_{u=0}^{p^n-1} T_u \eta^u,$$

and we are done, once the congruence

(8)
$$\sum_{u=0}^{p^{n}-1} T_{u} \eta^{u} \equiv 0 \pmod{p^{h\kappa}}$$

is shown to be equivalent to

(9) $T_0 \equiv T_1 \equiv \cdots \equiv T_{h-1} \equiv 0 \pmod{\mathfrak{p}}.$

Suppose that the congruences (9) hold true. Then these congruences are satisfied mod $p^{1/e}$ as well, and so mod $p^{h\kappa}$ since $1/e \ge h/\phi(p^n) = h\kappa$. Moreover, $\eta^u \equiv 0 \pmod{p^{h\kappa}}$ whenever $u \ge h$. This proves (8). The converse implication is established with similar arguments by induction on h. \Box

The above theorem enables us to determine λ_{χ} , once the numbers $T_u^{(n)}$ modulo \mathfrak{p} are known for a sufficiently large *n*. We state this more explicitly as follows.

COROLLARY. Put $z_n = [\phi(p^n)/e]$. With the notations of the theorem, (i) if $T_0^{(n)} \equiv T_1^{(n)} \equiv \cdots \equiv T_{h-1}^{(n)} \equiv 0$ and $T_h^{(n)} \neq 0 \pmod{p}$, where $0 \leq h \leq z_n - 1$, then $\lambda_{\chi} = h$; (ii) if $T_0^{(n)} \equiv T_1^{(n)} \equiv \cdots \equiv T_{z_n-1}^{(n)} \equiv 0 \pmod{p}$, then $\lambda_{\chi} \geq z_n$.

6. A Special Case. Suppose that $\theta = \theta_m$ is the nontrivial character of the quadratic field $\mathbf{Q}(\sqrt{m})$, where *m* is prime to *p*. Then the character $\chi = \theta \omega^{t-1}$ dealt with in the previous sections belongs to the character group of the field $\mathbf{Q}(\sqrt{m}, \zeta_p)$. Note that $f_{\theta} = d$ equals the absolute value of the discriminant of $\mathbf{Q}(\sqrt{m})$.

In this case, $\mathbf{Q}_p(\theta_m) = \mathbf{Q}_p$, so that e = 1 and $\mathfrak{p} = p \mathbf{Z}_p$. Hence we can determine λ_{χ} , provided it does not exceed p - 2, through the numbers $T_u = T_u^{(1)}$ as follows (see the corollary):

If $T_0 \equiv T_1 \equiv \cdots \equiv T_{h-1} \equiv 0$, $T_h \neq 0 \pmod{p}$, where $0 \leq h \leq p-2$, then $\lambda_{\chi} = h$.

If this criterion fails, then the computation of λ_{χ} requires passing to a higher level, i.e., computing $T_{u}^{(n)} \mod p$ for a higher value of n.

Remark. As is seen from (5), working on a level n involves computations with integers mod p^{n+1} . We point out that, for n = 1, the congruence (5) can be written as

$$a \equiv a^{p}(1 + v(a)p) \pmod{p^{2}}.$$

Thus, $v(a) \equiv -q_a \pmod{p}$, where q_a denotes the Fermat quotient for *a*, defined by $q_a \equiv (a^{p-1} - 1)/p \pmod{p}, 0 \leq q_a < p$.

7. Numerical Results. Consider, for a moment, the case of the cyclotomic field $\mathbf{Q}(\zeta_p)$. Then $X = \{\omega, \omega^3, \dots, \omega^{p-4}\}$ and it is known that

 $\lambda_{\chi} > 0$ with $\chi = \omega^{t-1}$ if and only if $B^t \equiv 0 \pmod{p}$

(t = 2, 4, ..., p - 3). The values of λ_{χ} have been computed for p < 125000 [10]; it has turned out that in this range every positive value of λ_{χ} equals 1. So the λ^{-} -invariant of $\mathbf{Q}(\zeta_{p})$, say λ_{0}^{-} , equals the *index of irregularity* of p, i.e., the number of *irregular pairs* (p, t). Tables of irregular pairs can be found in many books, e.g., [11].

 $\mathbf{286}$

Now let us enlarge the field to $K = \mathbf{Q}(\sqrt{m}, \zeta_p)$ with p + m. Then the character set X is enlarged by the characters $\theta_m \omega^{t-1}$ discussed in Section 6. To be precise, we have

$$\lambda^{-} = \lambda_{0}^{-} + \sum_{\chi} \lambda_{\chi},$$

where the sum is extended over the characters

(10)
$$\chi = \theta \omega^{t-1} \quad \text{with} \begin{cases} t = 2, 4, \dots, p-1 & \text{if } m > 0, \\ t = 1, 3, \dots, p-2 & \text{if } m < 0, \end{cases}$$

 $\theta = \theta_m$ being the quadratic character of $\mathbf{Q}(\sqrt{m})$. If m < 0, the component λ_{θ} is just the λ -invariant of this quadratic field.

The actual computations associated with the present work comprised the determination of λ_{χ} for the characters (10) when p and m range through the following values (m squarefree):

$$p = 3 \quad \text{and} \quad -3235 \le m \le 3454, *$$

$$p = 5 \quad \text{and} \quad -5000 < m \le 3147,$$

$$p = 7 \quad \text{and} \quad -3002 \le m < 1000,$$

$$p = 11 \quad \text{and} \quad -1000 < m < 500,$$

$$11$$

The asterisk above indicates that for a few values of m the computation was stopped at the result $\lambda_x \ge 6$ (see below).

The numerical material thus obtained contains about 22000 values of λ_{χ} , some 6400 of them being positive. Samples from this material are exhibited in Tables 1 and 2 of the appendix. Table 1 presents the results for p = 5, m > 0, and Table 2 for p < 200, $m = -1, \pm 2, -3, 5, -7$. Note that every odd prime p below 200 really appears in Table 2, i.e., to every p there is at least one m and t such that $\lambda_{\chi} > 0$ for $\chi = \theta_m \omega^{t-1}$.

For p > 3, only few cases were found in which $\lambda_{\chi} > p - 2$. These cases, which had to be settled on the level n = 2, are listed here:

р	т	t	λ_{χ}	p	т	t	λ_{χ}
5	439	4	4	5	-3178	1	4
5	1427	4	4	5	-3471	1	4
5	-311	1	4	5	-3547	3	4
5	-761	1	4	5	-3923	3	4
5	-966	1	4	5	-4026	1	5
5	-2861	3	4	5	-4774	1	4
5	-3081	1	4	7	-1371	1	7

For p = 7 it in fact turned out that λ_{χ} varies between 0 and 4 (assuming all values 0,...,4) except in the single case given above. For p = 11 we have the maximum $\lambda_{\chi} = 3$ for m = -723, t = 1.

If p = 3, then $\lambda_{\chi} > 1$ (= p - 2) in about a third of the cases. These could be settled on the level n = 2 (i.e., $\lambda_{\chi} \le 5$), except in six cases. In the latter cases the continuation of the procedure was given up since the values of λ_{χ} can be found in [6]; they are as follows:

$$\lambda_x = 6$$
 for $m = -239, -1022, -1427, -1777;$
 $\lambda_x = 7$ for $m = -458,$
 $\lambda_x = 8$ for $m = -2789.$

An examination of the results shows that the values of λ_{χ} seem to be distributed in the expected way. For example, if we keep p and t fixed, $t \neq 1$, and let m vary, then the number of cases with $\lambda_{\chi} \ge k$ (for $\chi = \theta_m \omega^{t-1}$ and $k \ge 0$) should be about a p^k th part of the number of all λ_{χ} ; this corresponds to the natural hypothesis that the coefficients of the power series $f(x, \chi \omega)$ are randomly distributed mod p. In the following table, N_k denotes the number of $\lambda_{\chi} \ge k$ in our range:

р	t	N ₀	N_1	<i>N</i> ₂	<i>N</i> ₃	N_1/N_0	1/p	N_2/N_0	$1/p^{2}$	N_{3}/N_{0}	$1/p^{3}$
3	2	1577	553	172	50	0.35	0.33	0.11	0.11	0.032	0.037
5	2	1596	326	55	9	0.20	0.20	0.034	0.040	0.006	0.008
5	4	1596	329	68	15	0.21	0.20	0.043	0.040	0.009	0.008
5	3	2535	490	88	14	0.19	0.20	0.035	0.040	0.006	0.008
7	3	1599	221	29		0.14	0.14	0.018	0.020		
7	5	1599	256	39		0.16	0.14	0.024	0.020		
			•								

If t = 1, the situation is different. Indeed, by Eqs. (1)–(3) the constant term of $f(x, \chi \omega)$ equals

(11)
$$a_0 = (\chi(p) - 1)B^1(\chi);$$

hence, in the present case λ_{χ} is positive whenever $\chi(p) = \theta_m(p) = +1$. We must therefore modify the above hypothesis so as to concern those $f(x, \theta_m \omega)$ only for which $\theta_m(p) = -1$. We tested this hypothesis for p = 5, m > 0, obtaining the following (N'_k denotes the number of $\lambda_{\chi} \ge k$ when $\theta_m(5) = -1$):

 $N'_0 = 1268, \quad N'_1 = 241, \quad N'_2 = 36; \qquad N'_1/N'_0 = 0.19, \quad N'_2/N'_0 = 0.028.$

We may also ask how often λ^- is, say, positive as p is fixed and |m| increases. If $p \leq 11$, then $\lambda_0^- = 0$, and so $\lambda^- > 0$ exactly when at least one of the s = (p - 1)/2 numbers T_0 corresponding to the characters $\theta_m \omega^{t-1}$ vanishes mod p. To avoid the exceptional case t = 1, consider positive m only. Then it is again natural to assume that the values of T_0 be randomly distributed mod p, and this implies that the proportion of the number of fields with $\lambda^- > 0$ to the number of all fields should be about $\rho_p = 1 - (1 - p^{-1})^s$. Below is a comparison between the observed and expected values of this proportion:

р	observed proportion	$ ho_p$
5	587/1596 = 0.37	0.36
7	204/530 = 0.38	0.37
11	100/279 = 0.36	0.38

A table including all the results of our computations has been deposited in the UMT file; see Review 29 in this issue.

8. Comparison with Previous Results. We next describe the contents of the previously published tables about λ^- . These tables were used by us to check our results.

Gold [3], [4] has computed, for p = 3, 5, 7, 11, the λ -invariant of the quadratic field with discriminant -d < 0. His results in [4, Table 2] cover the range $0 < d \le 264$. They agree completely with ours, and so do also the additional results presented in [3, Tables 2 and 5] after the following apparent errors are corrected: In Table 2, the value 1253 for d should be 1263 (corresponding to the given class number 20); in

Table 5, lines 5 and 6, instead of $\lambda = 3$ and $\lambda = 4$ one should read $\lambda = 2$. The latter correction is confirmed not only by [6] quoted below, but also by Corollary 5 in [3]. The expressions for e_n in Table 5 should be correspondingly corrected.

Kobayashi [6] investigates, for p = 3, the power series $f(x, \chi\omega)$ with $\chi = \theta_m$ and $\chi = \theta_m\omega$. He has determined the coefficients $a_0, \ldots, a_8 \mod 9$ of this power series for $-10^4 < m < 0$ and $0 < 3m < 10^4$. From his table one can read the value of λ_{χ} , since in all cases $\lambda_{\chi} \leq 8$. Note that for $\chi = \theta_m$ the table is far more extensive than ours, while for $\chi = \theta_m\omega$ our computations go a bit farther. The overlapping parts of both tables are in agreement, except that the table in [6] omits the first negative m with $\lambda_{\chi} > 0$, namely m = -2. The nonvanishing of λ_{χ} in this case follows, by (11), from the fact that $\chi(3) = \theta_{-2}(3) = +1$. Our computation indeed shows, in agreement with [4], that $\lambda_{\chi} = 1$.

The first author has determined, for $p < 10^4$, the components λ_{χ} with $\chi = \theta_m \omega^{t-1}$ for m = -1 and m = -3 (see [2] and [1], respectively). For $t = 3, 5, \ldots, p - 2$, one has in this range $\lambda_{\chi} = 1$ if (p, t - 1) is an *E*-irregular or *D*-irregular pair, respectively, and $\lambda_{\chi} = 0$ otherwise. A comparison of the tables in [1] and [2] with the present Table 2 shows no discrepancies.

The paper [5] by Hao and Parry tabulates the "*m*-irregular" primes p < 5025 for the values of *m* that appear in our Table 2. For a fixed *m*, the prime *p* is *m*-irregular if and only if there is at least one t > 1 such that $\lambda_{\chi} > 0$ with $\chi = \theta_m \omega^{t-1}$. It is easily checked that, for p < 200, the lists given in [5] coincide with the corresponding lists extracted from Table 2. Our computations show the somewhat interesting fact that every positive value of λ_{χ} in this region in fact equals 1, except for a single value $\lambda_{\chi} = 2$ occurring for p = 23 and $\chi = \theta_{-2}\omega^{10}$.

Let us finally mention that if m = -q, with q a prime, and $\theta_m(p) = -1$, then it follows from (11) that $\lambda_{\theta_m} > 0$ exactly when the class number of the field $\mathbf{Q}(\sqrt{-q})$ is divisible by p. Thus a partial check of our results is also provided by the class number tables of imaginary quadratic fields.

9. The computations. The computations were run on the DEC-20 computer at the University of Turku. The programs, written in Fortran, used only integer arithmetic.

As is seen from Sections 5 and 6, the main task was the computing of the sums S_{nk} (mostly for n = 1). This was started by searching a primitive root mod p and constructing the index table. After decomposing m into prime factors, the character values $\theta_m(a)$ were calculated via the Legendre symbol, using the congruence

$$\left(\frac{a}{q}\right) \equiv a^{(q-1)/2} \pmod{q}$$
 (q an odd prime factor of m)

and then checking that $\theta_m(a)$ indeed equals ± 1 or 0. For a fixed *t*, we chose a minimal b > 0 such that (b, dp) = 1 and $\theta_m(b)b^t \neq 1 \pmod{p}$. To find the value of v(a) for n = 1 (see (6) and (5)), we computed $a^{p-1} \mod p^2$ by employing the 2-adic expansion of p - 1 and the residues of $a^2, a^4, a^8, \dots \mod p^2$.

After computing the numbers $S_{1k} \mod p$ we searched for the first nonvanishing number in the sequence $T_0^{(1)}, \ldots, T_{p-2}^{(1)} \mod p$. The cases in which such a number did not exist were afterwards picked out by hand and dealt with on the level n = 2. The procedure on this level was similar, except that this time the determination of v(a) required computations mod p^3 .

Appendix

TABLE 1

The positive values of λ_{χ} for p = 5, $\chi = \theta_m \omega^{t-1}$ (t = 2 or 4) and $0 < m \leq 3147$.

m	t	^λ χ	m	t	λχ	m	t	λ _χ	m	t	λχ
14	2	·L	267	2	2	509	2.		734	, 2	1
23	2		274	4	1	505	4	î	734	~1	
	2	1	278	Aug.	3	514	÷,	·:	741	22	.1
34	2	.1	281	2	1	519	4	<u>'i</u>	743		3
37	2	2	282	2	1	5.23	ć,	1	752	á.	T
36	' F	1	287	4	1	526	Á,	1	753	4	2
39	4	1	293	2	·1	534	÷,	1	754	2	1
42	4	1	298	2	1	537	Ц.	1	758		1
51	4	1	298	4	.7	541	4	1	75.9	.2	1
53	∡ _ŀ .	1	307	2	1	543	4	1	761	×.	1
59	2	2	313	2	2	554	2	1	763	2	1
62	4	1	314	4	27 g 26 c	559	2	1	760	2	1
69	4	1	326	4	4	574	2	1	767	÷	٦.
73	<i>ـد</i> ן.	1	347	2	1	574	4	·i	781	ż	1
82	Ц.	ʻj	353	2	1	577	2	1	789	4	1
86	£	1	366	Z _F	1	581	ст. ; айт	1	791	4	1.
89	4	1	382	4	1	531	<i>L</i> ₁ .	2	794	2	1
107	×4.	1	391	2	1	587	2	1	798	st.g.	.1
109	64.	2	398	2	2	587	ېند	2	809	2	1
114	4	З	401	4.	3	589	4	3	814	2	1
123	2	1	407	4	L	591	2	·j.	817	4	1
127	2	<u> </u>	422	4	1	597	Ζ,	2	822	2	1
127	4	2	426	2	1	602	4	1	839	2	1
129	2	1	426	L.	1	606	۰ ۲	1	842	2	1
134	s.4.	Ĺ	427	2	1	611	2	1	851	2	1
139	4.	·I	427	4	1	617	÷.	1	857	×4	1
143	4	1	433	۲,		622	<	1	1-63	2	2
149	2	2	434	4	2	623	4	2	869	4	2
159	2	Л.	438	2	1	626	2	2	874	4	L
161	4	1	439	^ i	<i>L</i> _F	626	4	ţ	881	2	-
183	4	1	446	2	2	627	4	1	881	4	1
186	4	1	453	4	ст. л	629	2	2	887	22	1
187	í.	1	457		3	629	4	1	889	2	1
191	· -,	3	457	24	1	631	12	1	893	4	1
191	4	1	458	2	1	దవెవ	2	З	903	2	ï
199	2	1	466	<i>L</i> ₁	2	634	ń.	1	911	, 	1
202	4	1	467	2	·].	643	·**	1	917		1
21 i	4	1	467	×,	1	654	,	1	921	2	4
21/3	2	1	439		1	662	4	1	922		L
214	4	1	471	2	2	673	4	1	922	4	3
217	<u>~</u> +	.1	473	4	1	674	4	1.	923	4	1
222	2	1	479	2	1	678	-2	1	926	2	1
223	2	.1	489	4	1	679	2	1	933	4	-
227	2	1	497	44	1	681	ia.	1	937	2	3
237	2	1	498	2	2	683		1	939	2	.1
238	Ζ.	1	499	2	1	687	4	1	943	4	1
241	44	1	499	Z _t	Ŧ	687	100	1	046		1
253	12		501	2	1	675	4	1	947	4	1
257	2	٠L	501	4	1	717		1	949	2	1
257	4	1	502		1	719	÷+	· • •	957	2	1
25.9	۸Ļ	1	502	4	1	· · · · ·	4-p	1	7 66	4	.1

TABLE 1 (continued)

m	t	λχ	m	t	λx	m	t	λχ	m	t	λ _X
072	12	•1	1214	54	1	1483	1	1	1757	4	.,
978		1	4:247	÷	i	1480	4	4	1798	4	-1
982	A.4.	1	1226		-1	1493		1	1799	2	1
983	4	1	1231	2	3	1493	4	1	1803	£4.	1
QAA	÷.	-1	1234	4	-1	1506	2	1	1817		ē
007		4	1238		1	1509	2	-1	1829	2	1
1003	~	1	1238	44	-1	1511	-	1	1829	<	ī
1004	5	÷	1243	4	4	1514	2	1	1834	2	i
1007	2		1247	4.	2	1518	2	.1	1834	4	1
1018	5	1	1253	÷.	1	1518	4	3	1837	2	2
1021	4	1	1.54	2	1	1529	4	2	1838	4	1
1034	5	ī	1261	4	-1	1534	÷.	1	1846	ż	·l
1037		-1	1262	4	4	1531	4	1	1547	5	1
1041		4	1267		4	1533	÷.	1	1851		1
1042		4	1073		1	1540	0	4	1553	į.	-1
4051	4	4	1270		-1	1544	ید ر:	.1	1853	4.	1
10.01	- T	1	4070		.1	1574	-	-	1861	, مارىد	1
1043	2	1	1081	4	-1	4577		4. 1	1874	4	-1
1040	-	 .1	1280	ч 4.	 -1	1570		-1	1880	2	4
4073	-	-	4004		4	1582	2	4	1891	4	1
4075	nin. Lin	-1	4003	<u>с</u> Д	4	4586	s da	· · · · · · · · · · · · · · · · · · ·	1897	14	3
4077	-r 2	-1 -	1004		1	1597	5	-1	1898	4	1
4070	de.	- -	1301	يند. رئيس	4	45.97	 	4	1907		-1
1085			4 34 3		5	1421	6	i	1907	4	4
1000	-++ - Z	е -1	1247		ж. Ту	1431		1	4043	-	1
1007	4	4	1.2.04		-0 -0	1434	- /_	-	4043		-1
1070		4	1.2.2.7	47 13	-11 -1	1427	-r 7.		1014	0	4
14077	14 - 14	્ય	4207		-1 -1	1633		.c 1	4044	sin Li	1
4444			1727		4	1667	4	4	4.9.24	4	1
1442		"	4330	4	4	1.554	2	1	4053	-	1
444.2	ain Sa	4	1342	2	4	1458	sen da	.1	1934		.1
4414	~	4	1354	2 2	1	1650		÷	1937	2	·
1.1.1~r 1.1.1~r		4	1754	~	.1	1463	4		1938	2	1
4440		4	1344	2	-1	1484	4	i	1938	alan Anta	4
11.17	,		1344	6 4.4	-1 -1	4400		1	1944	-	4
4 C. C. J. D.		4	1370	~	4	1700	4	-	1943	4	2
1122		4	1792	4. 1.	-1 -1	1702	~	-4	1040	5	- -
4404		л. -1	1720	~	1	1717	-1	4	1954	-	1
4474		ત	1720			1704	~	1	4.05.7		1
44 70		- 1	1707	~		4707	sa. La	1	1050		1
44.24	ينه. و ت	2	12/3		4	1721	4	4	1966	2	4
1122			4401	~	4	4720		4	1940		.1
4427		1	1401		÷.	4738	ن		1973	2	-1
1427	د	4	1402			1730	2	1	1077	 'i	-1
147.2		.4	4.07		.,	4741	6. 6	4	1070	~	-1
1140	~	1	1407	4	۰.	1754	-1	1	1982		.1
1457	ينيد. ج	.4	14.20		1	175.7		-1	4084	4	4
1101	~+	.4	1427		-1	1759		1	4000	7	1
1107		i. 1	4427	94 10	1. ~,	1750	ъ. Д	يد ج	4000	 2.	1. 1
1100	4	1 	14.34		يند. ۱۰	4741			2000		1
ገቢ መጨ ተዋወጉ	*+ 7.	ينيد ۲	4774	* /.	1	1740		1. 1	2000	2	1
1107	** 7	л. г.	1.444.1	4 7.	7. T	1708	*+ /	-1 -1	2002	л. С	л л
1171	4 ~	ц. 	14++0	4	э	1740	~+ ~~	.t. -1	2002	·4 •1	۰. ۲
1142	4	مە 1	1451	16 2	4	1707	s	JL I	2003	н. 25	1 7
1194	4 	4	1.44 (3)	4 -	1 ->	1///	4 ~,	1	i inu s Small		
1170	4	1	1400	ж.		170.	ы. т	1			1
1	si.	4	1976	·	د د	1785	يند ر	1	2027	ын 4	1
1 < 1.5	4	L	1.1.1.2.8	-1	e.	1 1700	.+	I	1 2007	,	i

TABLE 1 (continued)

m	t	λ _X	m	t	λ _X	m	t	λ _X	m	t	λx
	;	:7	2307	2	1.	2571	4	J	2878	4	1
2034	dan.	1	2307	×1	1	2573	2	1	2882	2	.~~, 1
20123		-1	2314	2	1	2573	4	1	2886	4	L
1078	4	-1	2317	2	1	2577	ily.	.1	2887	2	1
2010		1	23.23		3	2578	4	1	2911	44.	1
2000	5	ò	1326	4	.+	2579	<i>х</i> _г .	۰Ľ	2914		2
2021	3 44	4	0325	2	1	2581	2	1	2923	4	1
TOAT	-	1	2333	ē	1	2599	4	.1	2927		÷.
1000		4	2.434		-1	2602	4	1.	2931	4	1
na7	÷	-1	2341		4	2603	2	1	2946	2	Ĺ
2025		4	2342		4	2609	£4.	2	2949		1
net		1	0347	÷	1	2633	2	1	2950	2	1
1072A		1	2353	÷	2	2634	4	1	2963	2	2
24 (14	1 2	2	135.4	0	1	26.39		1	2966	4	ī
2101		1	7359	4	4	2647	2	1	2967	2	
23.204	-	~	2340	4	4	2654	Å	2	2971	2	3
ni ki ki ki Tarih ki mat		4	0.87%			2657	4	1	2973	4	L
			27.84	-	4	: 661		1	2974		21
	- T - D	ت. ا	2386	2	-1	2667	4	j.	2983	+	2
040 <u>-</u>	تىد ب	4	0784	-tin La	-1 -1	2669	÷.	1	2985	4	2
		1.	5204	0	-1	2671	0	ï	2991	2	1
21127 0100	یند ر ۱	4	0301	2	- -	2671		1	2991		1
C. L. Z. ²⁷ 204 1724	-	1	>207	4	-1 -1	2683	4	ž	2993	4.	1
1.0.1 7	-	1. - i	12077	~	4	74.80	÷.,	4	7004	ú	1
21941 3277	~	л. .ч	2.277	-+	 7	2000	0	4	2998	2	-1
111. S (C) S 14 (C) (Z)). +	2/00		1	2007	da.	-1	3013		4
1.1.2.2	ы. /	1.	2411	~	-, -,	200	4	.1	3014	2	2
and the color	**	ж ч	2400	· · ·		2075	 .6	2	3023		1
1111110 	4	л. 4	2400	÷	-1	20704	2	-1	3039	4	ĩ
2150	4 0	, a	2400	···	يد ۱	2700	с. 	4	3061	4	1
2011/2017 1949/14		1	2440			0716	5		305 3		.1
2101 Con 1774	<u>,</u>	یند. ۲	2447			2717		2	3054		1
2173	44 ~,	1	2437	~	~	577 572		3	3059	4	- Ĵ
1377	<u></u>		2462	5 1		2(20)	يند ار		3037	6	-1
2151	2	i.	2471	4	~ ~	0721	~+ 7.	с -1	1 2082	4	4
2162	2		2401	2. 	ید. ۲	0070	~+ /.	~	2003		4
2189	1	1	2482	6.0 (**)	ار به	5757	4		34.04	с. С.	2
1.69	4.	ì	2400	4	1.	2(4)	·	يند. 1-	2100		
2194		1	2487	a	1	a. 7 44 a.	ан. Х	-	3102	- -	4
2219	2	1	2489	1	3	274-5	*+ /	e. A	2104	e. -	
2224		.1	2496	j-	0 	2740	~, ~,		3107	-	یند. با
and Cal	12	1	2501		é.	2737	9.e.e. 1	ينيد. اور	2444	4. 1.	-t -t
		L	2503		1	2700	аб. 1	.L †	3413	,	Э
	<u>.</u>	<u>ئ</u>	1505	4	1	2771		1. 1	74.24	 ~~	L .4
2234	4	5	2509	si.	1	2770	د رم	1	3121	i.	.د ۱
122.145	1	1	2513	4	1	2//0	ж. Х.	1	3104	•••	1
.'	4	.1	1519	alia A	l. 	2003	~	1.	34.07		4
1257		ł.	d Saladi Ser su	4 	۰	2014	ے ا	1	74.00	- -	1
	+	1	2526	شد. د د	́г. .я	2.021 1.021	یند. ۱	L 1	3400	s. da	3. 1
2263	**	2	1 2531	ند.	۲ . م	2022		4	2474	4	1
నవరిక బాలుగ	7	£	25.53	**	1	0400	a	۱. 	7178		-1
2273	<u>.</u>	ì.	2534		ć .	2027	м. х,		34.57	~	1
2275		1	12546	4	ا. ب	1041	к. 2	1 .4	5147	.i.,	T
1278	 -		1 2551		.1	2040	4	1			
0279	Å [-	L	1 1957		i	2851	-+	1			
0281	2		1 2558	4	1	1 2859		l.			
2287	*+	1	2563	æ.'	-1	-8.7	4	1			
2306		1	, 566	4	Ł	2878	2		1		

TABLE 2

The values of $t, 1 \le t \le p - 1$, for which $\lambda_{\chi} > 0$ with $\chi = \theta_m \omega^{t-1}$, in the region 2 , <math>m = -7, -3, -2, -1, 2, 5. The dagger ([†]) indicates that $\lambda_{\chi} = 2$; in all other cases $\lambda_{\chi} = 1$.

p m	-7	-3	-2	-1	2	5	p m	-7	-3	-2	-1	2	5
З			1				101				1		
5		1		1			103		1		0.5		
11	1		1		4				93	:			
13	·	1+		1	12		107	1		1		64 86	22 100
17			1	1		14	109	1	1		1		
19		1	1	11	6	8	112	105					
23	1	17	5 11 [†]				113	65	55	13			
29	1			1			107			109			
	19						127	1	1			40 56	62
31		1		23	30		131			1			32
37	1	1	1		34	1.0				51 57			64
41	1	1	1	13		18	137	1		1	1		84
47	25	13		15				45		57	43		
53	1	29		1			139	21	1	1	129		44
	19 43	45							99	19			104
59	33		1		34		149	1 39		79	147	146	22
			19		36			103					
61		1		1		42	151	1	1			14	66
				7			157	101	1	1	1		144
67	1	1 47	1	27		6	167						66
71	1			29	68		173	13		121	1	74	
73	7	1	1	1		70		97 153					
70	11	1	31	10	1.0		179	1		1		74	
/9	1	1		19	30				4	119			
83	53		1				181	35	1'		1		
00	65		15		22		191	1					10
09			33		32			31					
97		1	1	1			193	1 59	1	1	1 75		
							197	1	179 183	191	1		
							199		1 161			186	

Department of Mathematics University of Turku SF-20500 Turku, Finland

1. R. ERNVALL, "Generalized Bernoulli numbers, generalized irregular primes, and class number," *Ann. Univ. Turku. Ser. A I*, No. 178, 1979, 72 pp.

2. R. ERNVALL & T. METSÄNKYLÄ, "Cyclotomic invariants and E-irregular primes," Math. Comp., v. 32, 1978, pp. 617–629.

3. R. GOLD, "Examples of Iwasawa invariants," Acta Arith. v. 26, 1974, pp. 21-32.

4. R. GOLD, "Examples of Iwasawa invariants, II," Acta Aruth., v. 26, 1975, pp. 232-240.

5. F. H. HAO & C. J. PARRY, "Generalized Bernoulli numbers and *m*-regular primes," Math. Comp., v. 43, 1984, pp. 273-288.

6. S. KOBAYASHI, "Calcul approché de la série d'Iwasawa pour les corps quadratiques (p = 3)," Number Theory, 1981–82 and 1982–83, Exp. No. 4, 68 pp., Publ. Math. Fac. Sci. Besançon, Univ. Franche-Comté, Besançon, 1983.

7. H. W. LEOPOLDT, "Eine Verallgemeinerung der Bernoullischen Zahlen," Abh. Math. Sem. Univ. Hamburg, v. 22, 1958, pp. 131-140.

8. T. METSÄNKYLÄ, "Iwasawa invariants and Kummer congruences," J. Number Theory, v. 10, 1978, pp. 510-522.

9. I. SH. SLAVUTSKII, "Local properties of Bernoulli numbers and a generalization of the Kummer-Vandiver theorem," *Izv. Vyssh. Uchebn. Zaved. Mat.*, No. 3 (118), 1972, pp. 61–69. (Russian)

10. S. S. WAGSTAFF, JR., "The irregular primes to 125000," Math. Comp., v. 32, 1978, pp. 583-591.

11. L. C. WASHINGTON, Introduction to Cyclotomic Fields, Springer-Verlag, Berlin and New York, 1982.