A Method for Computing the Iwasawa λ-Invariant

By R. Ernvall and T. Metsänkylä

Abstract

We present a method for computing the minus-part of the Iwasawa λ-invariant of an Abelian field K. Applying this method, we have computed λ^{-}for several odd primes p when K runs through a large number of quadratic extensions of the p th cyclotomic field. A report on these computations and an analysis of the results is included.

1. Introduction. Let K be an Abelian field, i.e., a finite Abelian extension of \mathbf{Q}. For a prime $p>2$, consider the cyclotomic \mathbf{Z}_{p}-extension K_{∞} of K. Let $K_{n}(n \geqslant 0)$ denote the intermediate field of K_{∞} / K which is cyclic of degree p^{n} over K. The p-part of the class number of K_{n} equals $p^{\lambda n+\nu}$, for all sufficiently large n, where $\lambda=\lambda(p)$ and $\nu=\nu(p)$ are integral constants, $\lambda \geqslant 0$. Call λ the Iwasawa λ invariant of K and write $\lambda=\lambda^{+}+\lambda^{-}$, where λ^{+}is the corresponding invariant of the maximal real subfield of K. In this paper we present a method for computing λ^{-}, developed by the second author, and report on computer calculations by the first author, performed by this method.

If the conductor f_{K} of the field K is divisible by p^{2}, then K has a subfield L such that $p^{2}+f_{L}$ and the cyclotomic \mathbf{Z}_{p}-extension of L equals K_{∞}. Hence we assume, without loss of generality, that $p^{2}+f_{K}$. Denote by $\mathrm{Ch}(K)$ the character group of K. It is known that λ^{-}decomposes as

$$
\lambda^{-}=\sum_{x \in X} \lambda_{x}
$$

with

$$
X=X(K)=\left\{\chi \in \operatorname{Ch}(K): \chi(-1)=-1, \chi \neq \omega^{-1}\right\}
$$

where ω denotes the Teichmüller character $\bmod p$ and λ_{χ} is the λ-invariant of the Iwasawa power series representing the p-adic L-function $L_{p}(s, \chi \omega)$.

Thus, the computation of λ^{-}is reduced to the determination of the components λ_{χ}. This will be done in two steps: We first relate λ_{χ} to the p-orders of certain generalized Bernoulli numbers and then show how to determine these p-orders by means of a series of character sum congruences. As an application we consider the fields $\mathbf{Q}\left(\sqrt{m}, \zeta_{p}\right)$, where m is an integer prime to p and ζ_{p} denotes a primitive p th root of 1 . In this case the congruences in question are simply rational congruences $\bmod p$.

The computational part of our work consists of the determination of λ^{-}for quite a large collection of fields $\mathbf{Q}\left(\sqrt{m}, \zeta_{p}\right)$, chosen so that either p or $|m|$ is small. More precisely, we computed for these fields the components λ_{χ} with $\chi=\theta_{m} \omega^{t}$, where θ_{m} is the quadratic character of the field $\mathbf{Q}(\sqrt{m})$; this is sufficient since the λ^{-}invariants of the cyclotomic subfields $\mathbf{Q}\left(\zeta_{p}\right)$ are known. Our results also give the λ-invariant of $\mathbf{Q}(\sqrt{m})$ for the negative m in the range under consideration.

There are previous numerical results about λ^{-}in [1], [2], [3], [4], [6]. These concern mainly quadratic fields and the fields $\mathbf{Q}\left(\sqrt{-1}, \zeta_{p}\right)$ and $\mathbf{Q}\left(\sqrt{-3}, \zeta_{p}\right)$, and in all cases the decomposition of λ^{-}is simple in the sense that either there is but one positive component λ_{x}, or all the positive components are equal to 1 . In the present results this is no longer the case.

A detailed description of our computations appears in Sections 7-9.
2. On p-Adic L-Functions. For the theory of this section, the reader is referred to Washington's book [11], in particular to Sections 5.2 and 7.2.
We fix an embedding of the field of algebraic numbers in an algebraic closure Ω_{p} of \mathbf{Q}_{p}, the field of p-adic numbers. Denote by ord ${ }_{p}$ the p-adic valuation on Ω_{p}, normalized so that $\operatorname{ord}_{p}(p)=1$.

Let χ be a character in $X(K)$ (all characters are assumed primitive). Since the conductor f_{χ} of χ divides f_{K}, it is not divisible by p^{2}; we say that χ is of the "first kind". Put

$$
f_{\chi}=d \text { or } d p \quad \text { with }(d, p)=1
$$

As in the introduction, let K_{n} denote the nth layer of the \mathbf{Z}_{p}-extension K_{∞} / K ($n \geqslant 0$). The character group of K_{n} is of the form $\mathrm{Ch}(K) \times\left\langle\pi_{n}\right\rangle$, where π_{n} is a character with order p^{n} and conductor p^{n+1} (or 1 , if $n=0$); π_{n} is called a character of the "second kind".

Now consider the p-adic L-function $L_{p}(s, \psi)$ for the (nonprincipal) character $\psi=\chi \omega \pi_{n}$. This function is defined in Ω_{p} in a neighborhood of 1 containing \mathbf{Z}_{p}, the p-adic integers, and it has the fundamental property that

$$
\begin{equation*}
L_{p}(1-k, \psi)=-\left(1-\psi_{k}(p) p^{k-1}\right) B^{k}\left(\psi_{k}\right) / k \quad(k \geqslant 1) \tag{1}
\end{equation*}
$$

where $\psi_{k}=\psi \omega^{-k}$ and $B^{k}\left(\psi_{k}\right)$ stands for the k th generalized Bernoulli number attached to the character ψ_{k}.

Denote by $\mathbf{Q}_{p}(\chi)$ the extension of \mathbf{Q}_{p} generated by the values of χ. Iwasawa's theory of p-adic L-functions asserts that there exists a power series

$$
\begin{equation*}
f(x, \chi \omega)=\sum_{J=0}^{\infty} a_{j} x^{J} \tag{2}
\end{equation*}
$$

whose coefficients $a_{J}=a_{J}(\chi)$ are integers of $\mathbf{Q}_{p}(\chi)$, such that

$$
\begin{equation*}
L_{p}\left(s, \chi \omega \pi_{n}\right)=f\left(\frac{(1+d p)^{s}}{\pi_{n}(1+d p)}-1, \chi \omega\right) \tag{3}
\end{equation*}
$$

According to the Ferrero-Washington theorem, the power series $f(x, \chi \omega)$ has $\mu=0$, in other words, there is an index j for which $\operatorname{ord}_{p}\left(a_{j}\right)=0$. The least such j is called the λ-invariant (or Weierstrass degree) of $f(x, \chi \omega)$. This is the number λ_{χ} introduced in Section 1.
3. The p-Orders of Generalized Bernoulli Numbers. Let us decompose χ as

$$
\chi=\theta \omega^{t-1} \quad \text { with } f_{\theta}=d(\geqslant 1), \quad 1 \leqslant t \leqslant p-1 .
$$

In this section we obtain a relation between λ_{χ} and the p-order of $B^{t}\left(\theta \pi_{n}\right)$.
For a fixed $n \geqslant 1$, put

$$
\alpha_{k}=\frac{(1+d p)^{1-k}}{\pi_{n}(1+d p)}-1 \quad(k \geqslant 1)
$$

It follows from (3) and (1) that, for all $t=1, \ldots, p-1$,

$$
\begin{aligned}
f\left(\alpha_{t}, \theta \omega^{t}\right) & =L_{p}\left(1-t, \theta \omega^{t} \pi_{n}\right) \\
& =-\left(1-\left(\theta \pi_{n}\right)(p) p^{t-1}\right) B^{t}\left(\theta \pi_{n}\right) / t=-B^{t}\left(\theta \pi_{n}\right) / t
\end{aligned}
$$

By using this result we prove the following proposition in which ϕ denotes Euler's totient function and e is the ramification index of $\mathbf{Q}_{p}(\theta) / \mathbf{Q}_{p}$.

Proposition 1. Let $n \geqslant 1$ and $1 \leqslant t \leqslant p-1$. We have

$$
\begin{array}{ll}
\operatorname{ord}_{p}\left(B^{t}\left(\theta \pi_{n}\right)\right)=\lambda_{\chi} / \phi\left(p^{n}\right)<1 / e & \text { if } \lambda_{\chi}<\phi\left(p^{n}\right) / e, \\
\operatorname{ord}_{p}\left(B^{t}\left(\theta \pi_{n}\right)\right) \geqslant 1 / e & \text { if } \lambda_{\chi} \geqslant \phi\left(p^{n}\right) / e .
\end{array}
$$

Proof. We evaluate the p-order of $f\left(\alpha_{t}, \theta \omega^{t}\right)=\sum_{j=0}^{\infty} a_{j} \alpha_{t}^{J}$.
By the definition of π_{n}, the number $\pi_{n}(1+d p)=\zeta$ is a primitive p^{n} th root of 1 . Since

$$
\alpha_{t}=\frac{1-\zeta(1+d p)^{t-1}}{\zeta(1+d p)^{t-1}}
$$

we have $\operatorname{ord}_{p}\left(\alpha_{t}\right)=\operatorname{ord}_{p}(1-\zeta)=1 / \phi\left(p^{n}\right)$.
As to the p-orders of the coefficients a_{J}, observe that these are integers of $\mathbf{Q}_{p}(\chi)=\mathbf{Q}_{p}(\theta)$. Therefore, if $\operatorname{ord}_{p}\left(a_{j}\right)>0$ then $\operatorname{ord}_{p}\left(a_{j}\right) \geqslant 1 / e$.

Recalling the definition of λ_{χ} we now see that

$$
\begin{aligned}
\operatorname{ord}_{p}\left(a_{,} \alpha_{t}^{j}\right) & \geqslant 1 / e & & \text { for } 0 \leqslant j \leqslant \lambda_{\chi}-1, \\
& =j \operatorname{ord}_{p}\left(\alpha_{t}\right)=\lambda_{\chi} / \phi\left(p^{n}\right) & & \text { for } j=\lambda_{\chi}, \\
& \geqslant j \operatorname{ord}_{p}\left(\alpha_{t}\right)>\lambda_{\chi} / \phi\left(p^{n}\right) & & \text { for } j>\lambda_{\chi} .
\end{aligned}
$$

Consequently, if $\lambda_{x}<\phi\left(p^{n}\right) / e$, then

$$
\operatorname{ord}_{p}\left(f\left(\alpha_{t}, \theta \omega^{t}\right)\right)=\lambda_{\chi} / \phi\left(p^{n}\right),
$$

while otherwise this p-order is at least $1 / e$. Hence the result.
Proposition 1 gives us the value of λ_{χ}, once we know $\operatorname{ord}_{p}\left(B^{t}\left(\theta \pi_{n}\right)\right)$ for a sufficiently large n. For later purposes it is convenient to reformulate this proposition, actually in a bit weaker form, as follows.

Note that the congruence $\alpha \equiv \beta\left(\bmod p^{r}\right)$ in Ω_{p} means that $\operatorname{ord}_{p}(\alpha-\beta) \geqslant r$.
Proposition 2. Let $n \geqslant 1$ and $1 \leqslant t \leqslant p-1$. Assume that $h \in \mathbf{Z}, 1 \leqslant h \leqslant$ $\phi\left(p^{n}\right) / e$. Then

$$
\lambda_{x} \geqslant h \text { if and only if } B^{t}\left(\theta \pi_{n}\right) \equiv 0\left(\bmod p^{h / \phi\left(p^{n}\right)}\right) .
$$

Proof. Suppose that the above congruence holds. If $\lambda_{\chi}<\phi\left(p^{n}\right) / e$, then a comparison of this congruence with the first part of Proposition 1 shows that $\lambda_{\chi} \geqslant h$. If $\lambda_{\chi} \geqslant \phi\left(p^{n}\right) / e$, then the assertion follows directly from the assumption made about h.

To verify the converse, apply both parts of Proposition 1 separately.
Remark. Proposition 2 is of the same kind as the main result in the second author's paper [8]. This relates λ_{χ} to certain Kummer type congruences of $B^{k}(\theta)$, provided $\lambda_{\chi} \leqslant p-1$. Proposition 2 would enable one to replace the proof presented in [8] by a somewhat simpler proof.
4. Bernoulli Numbers and Character Sums. We now express the residue of $B^{t}\left(\theta \pi_{n}\right)$ modulo p in terms of suitable character sums.

For any character ψ with conductor f we have, in the usual symbolic notation,

$$
B^{k}(\psi)=\frac{1}{f} \sum_{a=1}^{f} \psi(a)(f B+a-f)^{k} \quad(k \geqslant 0)
$$

(e.g., [7, p. 134]), where the B^{m} denote ordinary Bernoulli numbers. On changing the summation variable a into $f-a$ we obtain

$$
B^{k}(\psi)=\frac{(-1)^{k} \psi(-1)}{f} \sum_{a=1}^{f} \psi(a)(a-f B)^{k}
$$

Let $\psi=\theta \pi_{n}$ with $n \geqslant 1$. Then $\psi(-1)=(-1)^{t}$ since the character $\chi=\theta \omega^{t-1}$ is odd and π_{n}, being of p-power order, is even. Hence we find that

$$
\begin{aligned}
B^{t}\left(\theta \pi_{n}\right) & =\frac{1}{d p^{n+1}} \sum_{a=1}^{d p^{n+1}}\left(\theta \pi_{n}\right)(a)\left(a-d p^{n+1} B\right)^{t} \\
& \equiv \frac{1}{d p^{n+1}} \sum_{a=1}^{d p^{n+1}}\left(\theta \pi_{n}\right)(a) a^{t}-t B^{1} \sum_{a=1}^{d p^{n+1}}\left(\theta \pi_{n}\right)(a) a^{t-1}(\bmod p)
\end{aligned}
$$

The second sum of the last expression vanishes $\bmod p$, as can be verified again by the transformation $a \rightarrow d p^{n+1}-a$. Therefore,

$$
\begin{equation*}
B^{t}\left(\theta \pi_{n}\right) \equiv \frac{1}{d p^{n+1}} \sum_{a=1}^{d p^{n+1}}\left(\theta \pi_{n}\right)(a) a^{t}(\bmod p) \tag{4}
\end{equation*}
$$

From this result we derive the following congruence which is of the same type as the classical Voronoĭ congruence for ordinary Bernoulli numbers. We point out that the congruence (in a sharper form) has also been proved by Slavutskiĭ [9, congr. (6)].

Proposition 3. Let b be a positive rational integer with $(b, d p)=1$. Then

$$
\left(b^{t}-\left(\theta \pi_{n}\right)(b)^{-1}\right) B^{t}\left(\theta \pi_{n}\right) \equiv t b^{t-1} \sum_{a=1}^{d p^{n+1}}\left(\theta \pi_{n}\right)(a) a^{t-1}\left[\frac{b a}{d p^{n+1}}\right](\bmod p)
$$

where, as in the above, $n \geqslant 1$ and $1 \leqslant t \leqslant p-1$.
Proof. Put $\psi=\theta \pi_{n}$. Let a and b be positive rational integers prime to $d p$. Keeping b fixed, we write

$$
b a=d p^{n+1}\left[\frac{b a}{d p^{n+1}}\right]+r_{a}, \quad 0<r_{a}<d p^{n+1}
$$

On raising this equation to the t th power and multiplying by $\psi(a)=\psi(b)^{-1} \psi\left(r_{a}\right)$, we get

$$
\psi(a) b^{t} a^{t} \equiv \psi(b)^{-1} \psi\left(r_{a}\right) r_{a}^{t}+\psi(a) t r_{a}^{t-1} d p^{n+1}\left[\frac{b a}{d p^{n+1}}\right]\left(\bmod p^{2 n+2}\right)
$$

If a runs through $1, \ldots, d p^{n+1}$, excepting those numbers for which $(a, d p)>1$, then so does r_{a}. Summing over a we find that (observe that $\psi(a)=0$ if $(a, d p)>1$)

$$
\left(b^{t}-\psi(b)^{-1}\right) \sum_{a=1}^{d p^{n+1}} \psi(a) a^{t} \equiv t d p^{n+1} \sum_{a=1}^{d p^{n+1}} \psi(a) r_{a}^{t-1}\left[\frac{b a}{d p^{n+1}}\right]\left(\bmod p^{2 n+2}\right)
$$

Since $r_{a} \equiv b a\left(\bmod p^{n+1}\right)$, this result together with (4) yields the claimed congruence.
5. The Main Result. Every rational integer a prime to p has the following unique representation $\bmod p^{n+1}$:

$$
\begin{equation*}
a \equiv \omega(a)(1+p)^{v(a)}\left(\bmod p^{n+1}\right), \quad 0 \leqslant v(a)<p^{n} \tag{5}
\end{equation*}
$$

For $b \in \mathbf{Z},(b, d p)=1$, put

$$
\begin{equation*}
S_{n k}=S_{n k}(b)=\sum_{v(a)=k} \theta(a) a^{t-1}\left[\frac{b a}{d p^{n+1}}\right] \quad\left(k=0, \ldots, p^{n}-1\right) \tag{6}
\end{equation*}
$$

where the sum is extended over those numbers a for which $1 \leqslant a<d p^{n+1},(a, d p)$ $=1$ and $v(a)=k$. Moreover, set

$$
\begin{equation*}
T_{u}=T_{u}^{(n)}=\sum_{k=u}^{p^{n}-1}\binom{k}{u} S_{n k} \quad\left(u=0, \ldots, p^{n}-1\right) \tag{7}
\end{equation*}
$$

Theorem. Let $\chi=\theta \omega^{t-1} \in X(K)$, where $f_{\theta}=d$ is prime to p and $1 \leqslant t \leqslant p-1$. Let b be a positive integer such that

$$
(b, d p)=1, \quad \theta(b) b^{t} \not \equiv 1(\bmod \mathfrak{p})
$$

where \mathfrak{p} is the maximal ideal of the ring of integers of $\mathbf{Q}_{p}(\theta)$. Denote by e the ramification index of $\mathbf{Q}_{p}(\theta) / \mathbf{Q}_{p}$. Let $n \geqslant 1$ and let $h \in \mathbf{Z}, 1 \leqslant h \leqslant \phi\left(p^{n}\right) / e$. With the above notations,

$$
\lambda_{\chi} \geqslant h \quad \text { if and only if } T_{0}^{(n)} \equiv T_{1}^{(n)} \equiv \cdots \equiv T_{h-1}^{(n)} \equiv 0(\bmod \mathfrak{p})
$$

Proof. Since the nonzero values of π_{n} are p^{n} th roots of 1 , we have $\pi_{n}(b) \equiv 1$ $(\bmod \mathfrak{p})$. Hence

$$
b^{t}-\left(\theta \pi_{n}\right)(b)^{-1} \not \equiv 0(\bmod \mathfrak{p})
$$

and it follows from Propositions 2 and 3 that

$$
\lambda_{\chi} \geqslant h \quad \text { if and only if } \sum_{a=1}^{d p^{n+1}} \theta(a) \pi_{n}(a) a^{t-1}\left[\frac{b a}{d p^{n+1}}\right] \equiv 0\left(\bmod p^{h \kappa}\right)
$$

where $\kappa=1 / \phi\left(p^{n}\right)$.
For a fixed $n \geqslant 1$, write

$$
\pi_{n}(1+p)=1+\eta
$$

Then we have $\operatorname{ord}_{p}(\eta)=\kappa$ and, by (5),

$$
\pi_{n}(a)=(1+\eta)^{v(a)} \text { for } p+a
$$

Consequently,

$$
\sum_{a=1}^{d p^{n+1}} \theta(a) \pi_{n}(a) a^{t-1}\left[\frac{b a}{d p^{n+1}}\right]=\sum_{k=0}^{p^{n}-1}(1+\eta)^{k} S_{n k}=\sum_{u=0}^{p^{n}-1} T_{u} \eta^{u}
$$

and we are done, once the congruence

$$
\begin{equation*}
\sum_{u=0}^{p^{n}-1} T_{u} \eta^{u} \equiv 0\left(\bmod p^{h \kappa}\right) \tag{8}
\end{equation*}
$$

is shown to be equivalent to

$$
\begin{equation*}
T_{0} \equiv T_{1} \equiv \cdots \equiv T_{h-1} \equiv 0(\bmod \mathfrak{p}) \tag{9}
\end{equation*}
$$

Suppose that the congruences (9) hold true. Then these congruences are satisfied $\bmod p^{1 / e}$ as well, and so $\bmod p^{h \kappa}$ since $1 / e \geqslant h / \phi\left(p^{n}\right)=h \kappa$. Moreover, $\eta^{u} \equiv 0$ $\left(\bmod p^{h \kappa}\right)$ whenever $u \geqslant h$. This proves (8). The converse implication is established with similar arguments by induction on h.

The above theorem enables us to determine λ_{χ}, once the numbers $T_{u}^{(n)}$ modulo \mathfrak{p} are known for a sufficiently large n. We state this more explicitly as follows.

Corollary. Put $z_{n}=\left[\phi\left(p^{n}\right) / e\right]$. With the notations of the theorem,
(i) if $T_{0}^{(n)} \equiv T_{1}^{(n)} \equiv \cdots \equiv T_{h-1}^{(n)} \equiv 0$ and $T_{h}^{(n)} \not \equiv 0(\bmod \mathfrak{p})$, where $0 \leqslant h \leqslant z_{n}-$ 1 , then $\lambda_{x}=h$;
(ii) if $T_{0}^{(n)} \equiv T_{1}^{(n)} \equiv \cdots \equiv T_{z_{n}-1}^{(n)} \equiv 0(\bmod \mathfrak{p})$, then $\lambda_{\chi} \geqslant z_{n}$.
6. A Special Case. Suppose that $\theta=\theta_{m}$ is the nontrivial character of the quadratic field $\mathbf{Q}(\sqrt{m})$, where m is prime to p. Then the character $\chi=\theta \omega^{t-1}$ dealt with in the previous sections belongs to the character group of the field $\mathbf{Q}\left(\sqrt{m}, \zeta_{p}\right)$. Note that $f_{\theta}=d$ equals the absolute value of the discriminant of $\mathbf{Q}(\sqrt{m})$.

In this case, $\mathbf{Q}_{p}\left(\theta_{m}\right)=\mathbf{Q}_{p}$, so that $e=1$ and $p=p \mathbf{Z}_{p}$. Hence we can determine λ_{χ}, provided it does not exceed $p-2$, through the numbers $T_{u}=T_{u}^{(1)}$ as follows (see the corollary):

If $T_{0} \equiv T_{1} \equiv \cdots \equiv T_{h-1} \equiv 0, T_{h} \not \equiv 0(\bmod p)$, where $0 \leqslant h \leqslant p-2$, then $\lambda_{\chi}=$ h.

If this criterion fails, then the computation of λ_{χ} requires passing to a higher level, i.e., computing $T_{u}^{(n)} \bmod p$ for a higher value of n.

Remark. As is seen from (5), working on a level n involves computations with integers $\bmod p^{n+1}$. We point out that, for $n=1$, the congruence (5) can be written as

$$
a \equiv a^{p}(1+v(a) p)\left(\bmod p^{2}\right)
$$

Thus, $v(a) \equiv-q_{a}(\bmod p)$, where q_{a} denotes the Fermat quotient for a, defined by $q_{a} \equiv\left(a^{p-1}-1\right) / p(\bmod p), 0 \leqslant q_{a}<p$.
7. Numerical Results. Consider, for a moment, the case of the cyclotomic field $\mathbf{Q}\left(\zeta_{p}\right)$. Then $X=\left\{\omega, \omega^{3}, \ldots, \omega^{p-4}\right\}$ and it is known that

$$
\lambda_{\chi}>0 \quad \text { with } \chi=\omega^{t-1} \quad \text { if and only if } \quad B^{t} \equiv 0(\bmod p)
$$

$(t=2,4, \ldots, p-3)$. The values of λ_{χ} have been computed for $p<125000$ [10]; it has turned out that in this range every positive value of λ_{x} equals 1 . So the λ^{-}-invariant of $\mathbf{Q}\left(\zeta_{p}\right)$, say λ_{0}^{-}, equals the index of irregularity of p, i.e., the number of irregular pairs (p, t). Tables of irregular pairs can be found in many books, e.g., [11].

Now let us enlarge the field to $K=\mathbf{Q}\left(\sqrt{m}, \zeta_{p}\right)$ with $p+m$. Then the character set X is enlarged by the characters $\theta_{m} \omega^{t-1}$ discussed in Section 6. To be precise, we have

$$
\lambda^{-}=\lambda_{0}^{-}+\sum_{x} \lambda_{x}
$$

where the sum is extended over the characters

$$
\chi=\theta \omega^{t-1} \quad \text { with } \begin{cases}t=2,4, \ldots, p-1 & \text { if } m>0 \tag{10}\\ t=1,3, \ldots, p-2 & \text { if } m<0\end{cases}
$$

$\theta=\theta_{m}$ being the quadratic character of $\mathbf{Q}(\sqrt{m})$. If $m<0$, the component λ_{θ} is just the λ-invariant of this quadratic field.

The actual computations associated with the present work comprised the determination of λ_{χ} for the characters (10) when p and m range through the following values (m squarefree):

$$
\begin{aligned}
& p=3 \quad \text { and } \quad-3235 \leqslant m \leqslant 3454, * \\
& p=5 \quad \text { and } \quad-5000<m \leqslant 3147, \\
& p=7 \quad \text { and } \quad-3002 \leqslant m<1000, \\
& p=11 \quad \text { and } \quad-1000<m<500, \\
& 11<p<200 \quad \text { and } \quad m=-7,-3,-2,-1,2,5 .
\end{aligned}
$$

The asterisk above indicates that for a few values of m the computation was stopped at the result $\lambda_{x} \geqslant 6$ (see below).

The numerical material thus obtained contains about 22000 values of λ_{χ}, some 6400 of them being positive. Samples from this material are exhibited in Tables 1 and 2 of the appendix. Table 1 presents the results for $p=5, m>0$, and Table 2 for $p<200, m=-1, \pm 2,-3,5,-7$. Note that every odd prime p below 200 really appears in Table 2, i.e., to every p there is at least one m and t such that $\lambda_{\chi}>0$ for $\chi=\theta_{m} \omega^{t-1}$.

For $p>3$, only few cases were found in which $\lambda_{\chi}>p-2$. These cases, which had to be settled on the level $n=2$, are listed here:

p	m	t	λ_{χ}	p	m	t	λ_{χ}
5	439	4	4	5	-3178	1	4
5	1427	4	4	5	-3471	1	4
5	-311	1	4	5	-3547	3	4
5	-761	1	4	5	-3923	3	4
5	-966	1	4	5	-4026	1	5
5	-2861	3	4	5	-4774	1	4
5	-3081	1	4	7	-1371	1	7

For $p=7$ it in fact turned out that λ_{x} varies between 0 and 4 (assuming all values $0, \ldots, 4$) except in the single case given above. For $p=11$ we have the maximum $\lambda_{\chi}=3$ for $m=-723, t=1$.

If $p=3$, then $\lambda_{x}>1(=p-2)$ in about a third of the cases. These could be settled on the level $n=2$ (i.e., $\lambda_{x} \leqslant 5$), except in six cases. In the latter cases the continuation of the procedure was given up since the values of λ_{χ} can be found in [6]; they are as follows:

$$
\begin{array}{ll}
\lambda_{\chi}=6 & \text { for } m=-239,-1022,-1427,-1777 \\
\lambda_{\chi}=7 & \text { for } m=-458, \\
\lambda_{\chi}=8 & \text { for } m=-2789 .
\end{array}
$$

An examination of the results shows that the values of λ_{x} seem to be distributed in the expected way. For example, if we keep p and t fixed, $t \neq 1$, and let m vary, then the number of cases with $\lambda_{\chi} \geqslant k$ (for $\chi=\theta_{m} \omega^{t-1}$ and $k \geqslant 0$) should be about a p^{k} th part of the number of all λ_{χ}; this corresponds to the natural hypothesis that the coefficients of the power series $f(x, \chi \omega)$ are randomly distributed $\bmod p$. In the following table, N_{k} denotes the number of $\lambda_{\chi} \geqslant k$ in our range:

p	t	N_{0}	N_{1}	N_{2}	N_{3}	N_{1} / N_{0}	$1 / p$	N_{2} / N_{0}	$1 / p^{2}$	N_{3} / N_{0}	$1 / p^{3}$
3	2	1577	553	172	50	0.35	0.33	0.11	0.11	0.032	0.037
5	2	1596	326	55	9	0.20	0.20	0.034	0.040	0.006	0.008
5	4	1596	329	68	15	0.21	0.20	0.043	0.040	0.009	0.008
5	3	2535	490	88	14	0.19	0.20	0.035	0.040	0.006	0.008
7	3	1599	221	29		0.14	0.14	0.018	0.020		
7	5	1599	256	39		0.16	0.14	0.024	0.020		

If $t=1$, the situation is different. Indeed, by Eqs. (1)-(3) the constant term of $f(x, \chi \omega)$ equals

$$
\begin{equation*}
a_{0}=(\chi(p)-1) B^{1}(\chi) \tag{11}
\end{equation*}
$$

hence, in the present case λ_{χ} is positive whenever $\chi(p)=\theta_{m}(p)=+1$. We must therefore modify the above hypothesis so as to concern those $f\left(x, \theta_{m} \omega\right)$ only for which $\theta_{m}(p)=-1$. We tested this hypothesis for $p=5, m>0$, obtaining the following (N_{k}^{\prime} denotes the number of $\lambda_{x} \geqslant k$ when $\theta_{m}(5)=-1$):

$$
N_{0}^{\prime}=1268, \quad N_{1}^{\prime}=241, \quad N_{2}^{\prime}=36 ; \quad N_{1}^{\prime} / N_{0}^{\prime}=0.19, \quad N_{2}^{\prime} / N_{0}^{\prime}=0.028
$$

We may also ask how often λ^{-}is, say, positive as p is fixed and $|m|$ increases. If $p \leqslant 11$, then $\lambda_{0}^{-}=0$, and so $\lambda^{-}>0$ exactly when at least one of the $s=(p-1) / 2$ numbers T_{0} corresponding to the characters $\theta_{m} \omega^{t-1}$ vanishes $\bmod p$. To avoid the exceptional case $t=1$, consider positive m only. Then it is again natural to assume that the values of T_{0} be randomly distributed $\bmod p$, and this implies that the proportion of the number of fields with $\lambda^{-}>0$ to the number of all fields should be about $\rho_{p}=1-\left(1-p^{-1}\right)^{s}$. Below is a comparison between the observed and expected values of this proportion:

p	observed proportion	ρ_{p}
5	$587 / 1596=0.37$	0.36
7	$204 / 530=0.38$	0.37
11	$100 / 279=0.36$	0.38

A table including all the results of our computations has been deposited in the UMT file; see Review 29 in this issue.
8. Comparison with Previous Results. We next describe the contents of the previously published tables about λ^{-}. These tables were used by us to check our results.

Gold [3], [4] has computed, for $p=3,5,7,11$, the λ-invariant of the quadratic field with discriminant $-d<0$. His results in [4, Table 2] cover the range $0<d \leqslant 264$. They agree completely with ours, and so do also the additional results presented in [3, Tables 2 and 5] after the following apparent errors are corrected: In Table 2, the value 1253 for d should be 1263 (corresponding to the given class number 20); in

Table 5 , lines 5 and 6 , instead of $\lambda=3$ and $\lambda=4$ one should read $\lambda=2$. The latter correction is confirmed not only by [6] quoted below, but also by Corollary 5 in [3]. The expressions for e_{n} in Table 5 should be correspondingly corrected.

Kobayashi [6] investigates, for $p=3$, the power series $f(x, \chi \omega)$ with $\chi=\theta_{m}$ and $\chi=\theta_{m} \omega$. He has determined the coefficients $a_{0}, \ldots, a_{8} \bmod 9$ of this power series for $-10^{4}<m<0$ and $0<3 m<10^{4}$. From his table one can read the value of λ_{χ}, since in all cases $\lambda_{\chi} \leqslant 8$. Note that for $\chi=\theta_{m}$ the table is far more extensive than ours, while for $\chi=\theta_{m} \omega$ our computations go a bit farther. The overlapping parts of both tables are in agreement, except that the table in [6] omits the first negative m with $\lambda_{\chi}>0$, namely $m=-2$. The nonvanishing of λ_{χ} in this case follows, by (11), from the fact that $\chi(3)=\theta_{-2}(3)=+1$. Our computation indeed shows, in agreement with [4], that $\lambda_{\chi}=1$.

The first author has determined, for $p<10^{4}$, the components λ_{χ} with $\chi=\theta_{m} \omega^{t-1}$ for $m=-1$ and $m=-3$ (see [2] and [1], respectively). For $t=3,5, \ldots, p-2$, one has in this range $\lambda_{\chi}=1$ if $(p, t-1)$ is an E-irregular or D-irregular pair, respectively, and $\lambda_{\chi}=0$ otherwise. A comparison of the tables in [1] and [2] with the present Table 2 shows no discrepancies.

The paper [5] by Hao and Parry tabulates the " m-irregular" primes $p<5025$ for the values of m that appear in our Table 2. For a fixed m, the prime p is m-irregular if and only if there is at least one $t>1$ such that $\lambda_{\chi}>0$ with $\chi=\theta_{m} \omega^{t-1}$. It is easily checked that, for $p<200$, the lists given in [5] coincide with the corresponding lists extracted from Table 2. Our computations show the somewhat interesting fact that every positive value of λ_{χ} in this region in fact equals 1 , except for a single value $\lambda_{\chi}=2$ occurring for $p=23$ and $\chi=\theta_{-2} \omega^{10}$.

Let us finally mention that if $m=-q$, with q a prime, and $\theta_{m}(p)=-1$, then it follows from (11) that $\lambda_{\theta_{m}}>0$ exactly when the class number of the field $\mathbf{Q}(\sqrt{-q})$ is divisible by p. Thus a partial check of our results is also provided by the class number tables of imaginary quadratic fields.
9. The computations. The computations were run on the DEC- 20 computer at the University of Turku. The programs, written in Fortran, used only integer arithmetic.

As is seen from Sections 5 and 6 , the main task was the computing of the sums $S_{n k}$ (mostly for $n=1$). This was started by searching a primitive root $\bmod p$ and constructing the index table. After decomposing m into prime factors, the character values $\theta_{m}(a)$ were calculated via the Legendre symbol, using the congruence

$$
\left(\frac{a}{q}\right) \equiv a^{(q-1) / 2}(\bmod q) \quad(q \text { an odd prime factor of } m)
$$

and then checking that $\theta_{m}(a)$ indeed equals ± 1 or 0 . For a fixed t, we chose a minimal $b>0$ such that $(b, d p)=1$ and $\theta_{m}(b) b^{t} \not \equiv 1(\bmod p)$. To find the value of $v(a)$ for $n=1$ (see (6) and (5)), we computed $a^{p-1} \bmod p^{2}$ by employing the 2 -adic expansion of $p-1$ and the residues of $a^{2}, a^{4}, a^{8}, \ldots \bmod p^{2}$.

After computing the numbers $S_{1 k} \bmod p$ we searched for the first nonvanishing number in the sequence $T_{0}^{(1)}, \ldots, T_{p-2}^{(1)} \bmod p$. The cases in which such a number did not exist were afterwards picked out by hand and dealt with on the level $n=2$. The procedure on this level was similar, except that this time the determination of $v(a)$ required computations $\bmod p^{3}$.

Appendix

Table 1

The positive values of λ_{χ} for $p=5, \chi=\theta_{m} \omega^{t-1}(t=2$ or 4$)$ and $0<m \leqslant 3147$.

m	t	λ^{\prime}	m	t	λ^{\prime}	m	t	λ_{x}	m	t	${ }^{\lambda} \times$
14	2	1	267	2	2	509	\because	\cdots	734	\because	1
\%	2	2	271	4	1	505	4	+	$73 /$	\cdots	\cdots
$\therefore 6$	\cdots	1	$\square 78$	4	3	514	4	;	741	\because	1
31	2	1	2s	2	1	519	4	1	743	\ldots	1
37	2	\cdots	2xa	2	1	53	4	3	$75 \pm$	$\underset{\sim}{2}$	1
36	'	1.	287	4	1	526	\therefore	1	753	\div	2
39	4	1	293	2	1	534	4	1	754	\because	1
${ }^{4} 2$	4	1	298	2	1	537	4	1	758	\cdots	1
51	4	1.	298	4	1	541	4	1	759	\cdots	1
53	4	1	307	2	1	5,4	4	1	761	λ_{r}	1
59	2	,	313	2	\pm	554	2	1	763	2	1
6	4	1	31.4	4	\because	559	$\stackrel{\square}{2}$	3	760	2	1
69	4	1	320	4	1	574	2	1	767	$+$	1
73	4	1	347	\cdots	1	574	4	1	781	\cdots	1
82	4	I	35,3	2	1	577	2	1	789	4	1
86	\cdots	1	366	4	1	581	2	1	79%	4	1.
89	4	1	38\%	\therefore	1	531	4	-	794	2	1
107	${ }^{4}$	1	391	\because	1	587	2	1	796	4	1
109	4	2	398	\%	2	587	4	$\%$	809	2	1
114	4	3	401	4	a	589	4]	814	2	1
13	2	1	407	4	1	591	2	1	617	4	1
127	2	\cdots	42 L	4	1	597	4	2	82	\cdots	1
127	4	2	426	2	1	602	4	1	339	2	1
129	2	I	426	4	1	606	$\stackrel{*}{ }$	1	842	2	1
134	4	1.	4.7	2	1	611	2	1	851	2	1
39	4	,	427	4	1	617	4	1	85%	4	1
1.4 .3	4	1	433	4	\therefore	62	:	1	861	2	2
149	2	2	4.34	4	2	623	4	2	869	4	\%..
159	2	4	433	\cdots	1	626	2	2	874	4	1
161	4	1	4.39	$\stackrel{i}{r}$	4	626	4	1	881	2	
183	4	1	446	$\ddot{2}$	2	¢27	4	1	881	4	1
186	4	1	4.53	4	-	629	\cdots	2	887	\therefore	1
187	\pm	1	457	\pm	3	629	4	1	889	2	2
191	\cdots	a	457	$\stackrel{\square}{4}$	1	631	\because	,	893	4	1
191	4	1	458	2	1.	¢33	2	3	903	z	.
199	2	1.	460	4	2	634	\therefore	1	911	\cdots	1
20:	4	1.	467	2	1	643	\because	1	917	\because	1
21	4	1	$46 ;$	4	1	654	\cdots	i.	92	z	\because
213	$\ddot{2}$	1	489	\cdots	1.	66.2	4	1.	222	\pm	1
214	4	1	471	2	$\underline{2}$	673	4	1	92	4	1
$\cdots 7$	\therefore	1	473	4	1	674	4	1.	923	4	.
222	a	1	479	2	1	678	e	1	920	\%	\vdots
23	2	1	489	4	1	679	2	1	933	4	$!$
227	2	1	497	${ }^{4}$	1	681	8	1	937	2	i
237	2	1	4.98	2	2	685	2	1	739	2	1
238	4	1	459	\cdots	1	687	4	1	943	4	!
241	4	1	497	4	1	609	\geq	1	6\%	\cdots	1
253	-	.	50%	2	1	699	4	1	947	4	1
257	2	I	501	4.	1	717	\because	1	947	2	1
25%	4	1	50%	\because	1	710	4	\therefore	95.7	\cdots	1
$\bigcirc 59$	${ }^{4}$	1.	50%	4	1.	$\cdots \square$	4	1	966	4	1

Table 1 （continued）

m	t	λ_{x}	m	t	λ_{x}	m	t	λ_{x}	m	t	${ }^{\lambda} \times$
972	2	1	1914	4	1	1453	\therefore	1	$17^{\circ} 7$	4	\therefore
978	\pm	1	1217	\cdots	1.	1480	4	1	1798	4	1
982	4	－	1200	4	1	1493	\cdots	1	1799	2	1
983	4	1	1231	2	3	1493	4	，	1808	4	1
986	\because	1	1231	4	1	1506	2	1	181\％	＋	\cdots
977	こ	1	1238	\therefore	1	1509	2	1	1829	2	1.
1003	2	1	1238	4	1	1511	$=$	1	18.9	${ }^{4}$	j
1006	2	\therefore	1243	4	1	1514	\because	1	1.534	こ	1
1007	2	1	1247	4	2	1518	2	1	1834	4	1
1018	2	1	1252	\because	1	1518	4	3	183%	2	2
1031	4	1	1.54	\cdots	1	1.529	\therefore	\cdots	1836	4	1
1034	ב	1	1261	4	1	1531	2	1	1846	2	\cdots
$103 ;$	$\dot{2}$	－	1262	4	1	1531	4	j	18.4 .7	\cdots	1
104	4	1	1207	4	1	1533	2	1	1351	4	1.
1042	4	1	1075	\because	1	154	\cdots	1	1553	\because	1
1051	4	1	1279	2	1	1546	2	1	185.3	4	1
1059	\because	1	1279	4	1	1571	2	1.	1861	4	1
1063	2	1	1281	4	1	1577	4	1	1874	4	1
1069	2	1	1289	4	1	1579	$=$	1	1882	2	1
1073	2	3	1291	3	1	1582	2	1	1991	4	1
10174	4	1.	1293	4	1.	1586	4	，	1897	4	3
11077	2	\cdots	1294	\because	1	1597	z	1	1898	4	1
1079	4	－	1301	4	1	1597	4	1	190%	\cdots	1
1085	4_{4}	2	1313	4	2	1621	4	1.	1907	4	1.
108：	4	1	1317	4	3	1631	2	1	1913	\because	1.
1.093	4	1	1321	4	2	1.631	4	1	1913	4	1
1097	\cdots	1	1327	2	1	1633	4	2	1.914	2	1
1106	2	1	1327	4	1	1.637	4	1	1914	4	1
1111	4	\cdots	1338	4	1	1641	4	1	$19 \% 1$	4	1.
1.113	\because	1	1357	4	1	1654	2	1.	1923	2	1.
1113	4	1	1342	2	1	1658	4	1	1934	\cdots	1
11.4	2	1	1351	4	1	1662	4	2	1.93%	2	1
1118	\because	1	1354	2	1	1603	4	1	1936	2	1.
1119	2	1	1366	2	1	1686	4	1.	19.38	4	1.
11.1	\because	1	1366	4	1.	1690	4	1	1941	\because	；
1122	2	1	1.379	2	1	1702	4.	2	1943	4	3
1123	2	1	1382	4	1	1713	4	1	1949	2	2
1126	z	1.	1389	2	1	1717	4	1	1954	2	1
1120	4	1	1389	4	1	17 ± 1	2	1.	1957	2	1
11.7	2	1	1393	4	2	1723	4	1	1959	4	1
1131	\cdots	\because	1398	4	1	1731	4	1	1960	4_{r}	1
1． 133	4	1	1.401	2	1	1738	こ	1	1709	4	1.
1137	$こ$	1.	1402	4	2	1738	4	2	1973	2	1
1137	4	1.	14016	4	1	1.739	2	1	1977	\therefore	1
1142	2	1	1407	4	1	1741	4	1	1979	2	，
1149	2	1	1.420	4	1	1754	4	1.	1.982	4	1
115%	4	1	14.27	4	4	175\％\％	\because	1	1986	4	1
1169	2	1	1429	4	1	1.758	\cdots	1.	1899	\cdots	i．
11.73	4	1	1434	\cdots	：	1755	4	1	1999	＇	．
1．18\％	4	E	14.34	4	1	1761	4	\because	anmi	\because	1.
118	4	1.	$14_{4}^{1} 1.1$	4	1	$176{ }^{\circ}$	4	1	－n¢e	2	1
1191	4	1.	$1+43$	4	3	1766	4	1	200：	4	1
1195	$\stackrel{\square}{\square}$	\because	1451	$\because '$	i	1769	\because	1	2un\％	\cdots	1
11．94	4	1	14，${ }^{\text {a }}$	4	1.	1777	4	1.	\％ma	4	B
1198	\cdots	1	$1+100$	a	\％	1\％\％	\because	1	0114	\cdots	1
1203	2	1	1：76	$\stackrel{-}{-}$	3	178.	2	1	007	－	1.
121.5	4	1	1.79	-1	2	17 n （	＇	i	シ0\％	；	1

Table 1 （continued）

m	t	λ_{x}	m	t	${ }^{\lambda} \times$	m	t	λ_{x}	m	t	${ }^{\lambda} \times$
ソワッ	2	\because	2307	2	1.	57.1	4	J	2878	${ }_{4}$	1
031	4	1	230.	$\stackrel{\prime}{\prime}$	1.	－5\％	$\dot{\sim}$	1	288.2	2	\because
203	$\dot{+}$	1	2314	2	1	2573	4	1	2886	4	1
	4	$\cdot 1$	317	2	1	957	4.	1	2887	\cdots	1
	\therefore	1	3： 3	－	3	2578	4	1	29.1	4	1
20：	$=$	2	－ E	${ }_{4}$	a	579	4	I	29.4	\therefore	2
． 081	4	1	\％\％	2	1	581	2	1	$\square 93$	4	1
$\therefore 085$	2	1	235	2	1	2509	4	1	2927	$\underline{\square}$	\pm
$\cdots 083$	＋	1	235	\therefore	4	260\％	4	1.	2931	4	1
908\％	2	1	254	\cdots	\cdots	\％u\％	\cdots	1	2944	2	：
勺®¢	\because	1	340	\therefore	：	$\bigcirc 609$	4.	\cdots	2947	．：	1
\％09\％	2	1.	－34．	\because	1	233	2	1.	95	\because	1
－98	\therefore	1	0353	\therefore	z	2684	4	1	2963	2	2
	4	2	2554	\cdots	1	$\underline{663}$	\because	1	2966	4	1
\therefore	\because	1	559	4	1	26.47	\therefore	1	2967	¥	\therefore
211	；	\cdots	23¢：	4	\pm	8.54	4	\cdots	29：1	2	1
\cdots	4	1	0375	\because	\because	205：	4	1	\cdots	4	1
－12	＂	\cdots	2581	\cdots	1	$0: 661$	\therefore	1	2974	\cdots	\therefore
2123	2	1	2380	\cdots	1	206：	4	\because	－983	＊	2
210	\therefore	1	2384	4	1	2669	\cdots	，	2950	4	2
21%	\because	1	2391	2	1	2071	$?$	1	2091	2	1
2120	\therefore	1	2301	4	\cdots	26.71	4	1	2901	4	1
2131	2	1.	3397	4	1	26es	4	3	2993	4	1
218	2	1	399	4	1	2680	\because	1	2904	4	1
\＃	2	，	206	＂	1	2687	2	1	2995	\therefore	1
3.15	\because	，	3411	4	1	2687	4	1	2013	\therefore	1
$\therefore 1.3$	4	1	2433	\because	\cdots	2694	4	1	3014	ב－	a＇
$\cdots 5 \%$	4	3	2438	\cdots	三	2988	4	2	3023	\cdots	1
258	4	：	2438	4	1	2700	2	1	3039	4	，
－159	\therefore	1	2446	\cdots	1	2711	\cdots	1	304， 1	4	1.
$\because 1 r^{1} 1$	，	2	3449	\cdots	1	2\％14	2	3	$305:$	\because	1
2171	4	1	2459	4	2	$\cdots 7$	\because	2	3014	4	1
497\％	：	\cdots	2462	\cdots	2	273	2	3	3059	4	2
2181	2	1.	2471	4	2	2723	4	$\%$	3077	4	1
二19：	2	1	2481	2	2	2731	4	1	508：	4	1
2189	2	：	2482	\cdots	1	3739	4	2	3090	\because	
$\cdots 1.39$	4.	；	2 m 86	2	1	$\therefore 741$	4	$=$	3104	$\stackrel{4}{4}$	2
2104	2	1.	2487	\cdots	1	2742	\cdots	1	3102	\cdots	1
\cdots	\because	1	$2+39$	\cdots	5	2743	4	2	3103	．	1
\％	\cdots	1	2496	4	3	$\because 740$	4	1	3106	2	2
\％	3	1	2501	－	2	．759	\because	\pm	3107	2	1
9	\cdots	1	503	2	1	2766	2	1	3111	4	1.
\％ 9	2	3	5503	4	1	2771	\therefore	1.	3113	\cdots	1
$3{ }^{3}$	4	3	2509	2	1	27%	\％	1	31%	2	1
$\therefore 3$	2	1.	2513	4	1	2778	\cdots	1	3121	4	
\cdots	4	I	－519	2	1.	28.03	4	1.	3126	\because	1
25：	\because	1.	$\therefore \sim$	4	\cdots	2814	2	1	3127	\because	1
$\therefore \cdots$	＋	1	25%	\because	I	28\％	2	1	3129	2	，
263	2	2	531	\because	1	\％2\％	4	1	3150	4	1.
203	2	1	2535	\therefore	1	－62．	2	1	$313{ }^{2}$	4	1
\cdots	\because	：	2534	\cdots	2	2829	4	3	3138	${ }^{6}$	1
－\％	\because	1	450	4	3	8841	\because	1	314%	2	1
$\because 7 \%$	\pm	\cdots	$\bigcirc 5.1$	\cdots	t	2843	4	1			
$\cdots \%$	\therefore	1	－5\％	－	，	2351	＋	1			
36	\because	\cdots		4	1	9859	\because	1.			
	4	1	$\square 5$	\therefore	1	2S＂；	4	1			
$\because 306$	\because	1	\％	4	1.	வ̇7	2	\cdots			

Table 2
The values of $t, 1 \leqslant t \leqslant p-1$, for which $\lambda_{\chi}>0$ with $\chi=\theta_{m} \omega^{t-1}$, in the region $2<p<200, m=-7,-3,-2,-1,2,5$. The dagger $\left({ }^{\dagger}\right)$ indicates that $\lambda_{x}=2$; in all other cases $\lambda_{x}=1$.

$p{ }^{m}$	-7	-3	-2	-1	2	5	$p^{\prime}{ }^{m}$	-7	-3	-2	-1	2	5
3			1				101				1 63		
5				1									
7		1					103		1 93				
11	1	+	1		4		107	1		1		64	22
13		1^{+}		1	12							86	100
17			1	1		14	109	1	1		1		
19		1	1	11	6	8		105					
23	1	17	${ }_{11}^{5}+$				113	1 65	55	1 13 109	1		
29	1			1			127	1	1			40	62
	19						127	1	1			40 56	62
31		1		23	30		131			1			32
37	1	1		1	34		131			51			32 64
41			1	1		18				57			
43	1	1	1	13			137	1		1	1		84
43	1	1	1	13				45		57	43		
47	25	13		15				101					
53	1	29		1			139	21	1	1	129		44
5	19	45					139	2	9.9	19	129		104
	43						149	1		79	1	146	22
59	33		1		34		14	39		79	147	146	2
			19		36			103					
					50		151	1	1			14	66
61		1		1		42							
				7		42	157	101	1		1		
67	1	1	1	27		6	163	1	1	1			144
		47					167						66
71	1			29	68		173	13		121	1	74	
73		1		1		70		97					
73	11	1	31	1		70		153					
79	1	1		19	$\begin{aligned} & 16 \\ & 30 \end{aligned}$		179	1		1 119		74	
							181		1^{+}		1		
83	53		1 1					$\begin{array}{r} 35 \\ 177 \end{array}$	1		1		
	65		15										
89			1	1	32		191	1					10
			33					31					
							193	1	1	1	1		
97		1	1	1				59			75		
							197	1	179	191	1		
									183				
							199		1			186	

Department of Mathematics
University of Turku
SF-20500 Turku, Finland

1. R. Ernvall, "Generalized Bernoulli numbers, generalized irregular primes, and class number," Ann. Univ. Turku. Ser. A I, No. 178, 1979, 72 pp.
2. R. Ernvall \& T. Metsänkylä, "Cyclotomic invariants and E-irregular primes," Math. Comp., v. 32, 1978, pp. 617-629.
3. R. Gold, "Examples of Iwasawa invariants," Acta Arith. v. 26, 1974, pp. 21-32.
4. R. Gold, "Examples of Iwasawa invariants, II," Acta Arıth., v. 26, 1975, pp. 232-240.
5. F. H. Hao \& C. J. Parry, "Generalized Bernoulli numbers and m-regular primes," Math. Comp., v. 43, 1984, pp. 273-288.
6. S. Kobayashi, "Calcul approché de la série d'Iwasawa pour les corps quadratiques $(p=3)$," Number Theory, 1981-82 and 1982-83, Exp. No. 4, 68 pp., Publ. Math. Fac. Sci. Besançon, Univ. Franche-Comté, Besançon, 1983.
7. H. W. Leopoldt, "Eine Verallgemeinerung der Bernoullischen Zahlen," Abh. Math. Sem. Univ. Hamburg, v. 22, 1958, pp. 131-140.
8. T. Metsänkylä, "Iwasawa invariants and Kummer congruences," J. Number Theory, v. 10, 1978, pp. 510-522.
9. I. Sh. Slavutskif, "Local properties of Bernoulli numbers and a generalization of the KummerVandiver theorem," Izv. Vyssh. Uchebn. Zaved. Mat., No. 3 (118), 1972, pp. 61-69. (Russian)
10. S. S. Wagstaff, Jr., "The irregular primes to 125000," Math. Comp., v. 32, 1978, pp. 583-591.
11. L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, Berlin and New York, 1982.
